www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Abstand Punkt-Fläche
Abstand Punkt-Fläche < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Punkt-Fläche: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 07:51 Do 14.09.2006
Autor: babel

Aufgabe
Berechnen Sie den Abstand zwischen dem Punkt (1, 1, 0.5) und der Fläche [mm] z=x^{2} [/mm] + [mm] y^{2} [/mm]

Hallo zusammen
Wenn ich den Abstand berechnen möchte, muss ich doch zuerst den Tangentialvektor der Fläche berechnen. Oder? Wie mache ich das bei dieser Fläche?

        
Bezug
Abstand Punkt-Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 08:47 Do 14.09.2006
Autor: goeba

Hallo,

wie willst Du denn _den_ Tangentialvektor berechnen? Davon gibt´s haufenweise.

Ich würde eine neue Funktion aufstellen, die in Abhängigkeit von x und y den Abstand von P zu dem zugehörigen Funktionswert angibt.

Von dieser Funktion das Minimum ist das, was Du suchst.

Viele Grüße,

Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]