Absolute Konvergenz aus Konver < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gegeben:
[mm] $a_{t,n}\in\mathbb{R}$ [/mm] für [mm] $t\in\{1,\ldots,n\}$ [/mm] mit [mm] $\sum_{t=1}^n a_{t,n}\underset{n\rightarrow\infty}{\rightarrow}a\in\mathbb{R}$
[/mm]
und
[mm] $g_n:=\sup_{t\in\{1,\ldots,n\}}|a_{t,n}|\underset{n\rightarrow\infty}{\rightarrow}0$.
[/mm]
Zu zeigen:
[mm] $\sum_{t=1}^n a_{t,n}^2\underset{n\rightarrow\infty}{\rightarrow}c<\infty.$
[/mm]
Oder noch besser wäre
[mm] $\sum_{t=1}^n a_{t,n}^2\underset{n\rightarrow\infty}{\rightarrow}0$ [/mm] |
Meine Idee sah wie folgt aus:
[mm] $\sum_{t=1}^n a_{t,n}^2\leq g_n\sum_{t=1}^n |a_{t,n}|$
[/mm]
Da [mm] $g_n$ [/mm] gegen 0 geht müsste man also "nur noch" zeigen, dass
[mm] $\sum_{t=1}^n |a_{t,n}|\underset{n\rightarrow\infty}{\rightarrow}c<\infty$
[/mm]
oder
[mm] $\sum_{t=1}^n g_n\underset{n\rightarrow\infty}{\rightarrow}c<\infty$.
[/mm]
Habe an das Wurzelkriterium gedacht.
Zwar ist [mm] $\lim\sqrt[n]{g_n}\leq1$ [/mm] aber das reicht ja leider nicht. Es muss ja ein [mm] $\theta\in(0,1)$ [/mm] gefunden werden, so dass [mm] $\lim\sqrt[n]{g_n}\leq\theta$. [/mm]
Danke für jegliche Hilfe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo zerberus,
bitte beachte unsere Forenregeln, wir legen hier Wert auf einen freundlichen Umgangston und deshalb auch auf eine Anrede.
Woher stammt denn diese Behauptung? Ich glaube nämlich nicht, dass das so stimmt. Probier's doch mal mit dem Beispiel [mm] $a_{t,n}=\bruch {(-1)^t}{\sqrt[4]n}$ [/mm] aus...
Gruß, banachella
|
|
|
|
|
Hallo Banchella,
danke für die schnelle Hilfe und das Gegenbeispiel. Noch mal eine kurze Frage: Eigentlich müsste doch auch schon [mm] $a_{t,n}=\frac{-1^t}{\sqrt{n}}$ [/mm] reichen, oder übersehe ich da etwas?
Mit [mm] $b_n:=a_{t,n}^2=\frac{1}{n}$ [/mm] oder [mm] $b_n:=|a_{t,n}|=\frac{1}{\sqrt{n}}$ [/mm] erhalte ich doch auch eine divergente Reihe [mm] $\sum b_n$. [/mm]
Grüße
Zerberus
|
|
|
|
|
Hallo zerberus,
> Mit [mm]b_n:=a_{t,n}^2=\frac{1}{n}[/mm] oder
> [mm]b_n:=|a_{t,n}|=\frac{1}{\sqrt{n}}[/mm] erhalte ich doch auch
> eine divergente Reihe [mm]\sum b_n[/mm].
das würde stimmen, wenn man über $n$ summieren würde, aber du summierst ja über $t$. Und dann ist [mm] $\sum_{t=1}^n\bruch 1n=n*\bruch [/mm] 1n=1$, also konvergent.
Gruß, banachella
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:13 Do 14.09.2006 | Autor: | zerberus01 |
Ja klar, danke sehr.
Zerberus
|
|
|
|