www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Absolute Kondition von "-"
Absolute Kondition von "-" < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Absolute Kondition von "-": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:46 So 10.12.2006
Autor: laryllan

Aufgabe
Die relative Kondition der Subtraktion kann beliebig groß werden. Wie verhält es sich mit der absoluten Kondition?

Betrachten Sie: [tex]|(x-y)-(x'-y')| \le \kappa_{abs} * max \{ |x-x'|, |y-y'| \} [/tex]

Hierb sind x' und y' gestörte Werte zu x bzw. y mit [tex]x' = x(1 + \epsilon_{x}) [/tex] bzw. [tex]y' = y(1 + \epsilon_{y}) [/tex].  

Aloha hé zusammen,

Ich sitze nun schon ein paar Stündchen an dieser ansich sehr leicht ausschauenden Aufgabe und finde den 'Knackpunkt' dabei nicht. In unserer Vorlesung haben wir den relativen Fehler der 'Grundrechenarten' bestimmt und kamen zu dem Ergebnis, dass die relative Kondition der Subtraktion für zwei dicht bei einander liegende Werte x,y beliebig groß werden kann. So wie ich die Aufgabenstellung verstanden habe, scheint dies für die absolute Kondition nicht der Fall zu sein. Nach einem Skript was ich in die Hand bekam, soll die absolute Kondition der Subtraktion "1" sein. Trotz Herumgewerkel mit der Dreiecksungleichung und den Definitionen von x' und y' komme ich einfach nicht auf ein sinnvolles Ergebnis. Bei mir sieht das so aus:



[tex] |(x-y)-(x'-y')| = |(x-x')-(y-y')| = |(x-x(1-\epsilon_{x})-(y-y(1-\epsilon_{y})| = |-x\epsilon_{x}+y\epsilon_{y}| \le \kappa_{abs} * max \{ |-x\epsilon_{x}|, |-y\epsilon_{y}| \}[/tex]

Die Dreiecksungleichung kann ich ja ansich nur anwenden, wenn x,y > 0 wären, denn dann hätte ich:

[tex][mm] |-x\epsilon_{x}+y\epsilon_{y}| [/mm] = [mm] |x\epsilon_{x}-y\epsilon_{y}| [/mm] = [mm] ||x\epsilon_{x}| [/mm] - [mm] |y\epsilon_{y}|| \le |x\epsilon_{x} [/mm] + [mm] y\epsilon_{y}| \le |x\epsilon_{x}| [/mm] + [mm] |y\epsilon_{y}| [/mm]

Irgendwie schaut das für mich eher so aus, als sei die absolute Kondition der Subtraktion eher 2. Oder mache ich jetzt hier einen gänzlichen Fehler?

Hoffendlich steigt einer von euch hier durch und kann mir da einen netten Hinweis geben.

Namárie,
sagt ein Lary, wo nun weiter an der Aufgabe schwitzt



        
Bezug
Absolute Kondition von "-": Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 Mo 11.12.2006
Autor: mathemaduenn

Hallo Lary,
Stimm doch was Du sagst. Da ist wohl dein Skript nicht richtig.
Bsp.:
x=1 y=-1
x'=0,5 y'=-0,5
|(x-y)-(x'-y')|=1
Ja und das kann man schwerlich durch max(|x-x'|,|y'-y'|)=0,5 nach oben abschätzen.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]