www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Abschätzung holomorph
Abschätzung holomorph < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung holomorph: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Mi 19.09.2012
Autor: softeisesser

Hi!
Wenn ich zeigen kann [mm] |f(s)|\le [/mm] g(s) und g(s) ist holomorph auf der Halbebene mit dem Realteil > a.
Ist dann f ebenfalls auf dieser Halbebene holomorph?



        
Bezug
Abschätzung holomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Do 20.09.2012
Autor: leduart

Hallo
deine Aufgabe ist so unsinnig.
ein Betrag kann doch nicht kleiner einer komplexen Zahl sein
Gruss leduart

Bezug
        
Bezug
Abschätzung holomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 07:59 Do 20.09.2012
Autor: fred97


> Hi!
>  Wenn ich zeigen kann [mm]|f(s)|\le[/mm] g(s) und g(s) ist holomorph
> auf der Halbebene mit dem Realteil > a.
>  Ist dann f ebenfalls auf dieser Halbebene holomorph?

Meinst Du vielleicht  [mm]|f(s)|\le |g(s)|[/mm] . Wenn ja, so betrachte mal

                 g(s):=s und [mm] f(s):=\overline{s}. [/mm]

g ist holomprph, f ist nicht holomorph.

FRED

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]