www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Abschätzung einer Funktion
Abschätzung einer Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Mi 26.09.2018
Autor: Maxi1995

Hallo,
ih beziehe mich []auf Seite 60 unten - Funktionentheorie   auf die Abschätzung zur Lipschitz-Eigenschaft.
Kann mir jemand erklären, warum für eine holomorphe Funktion f auf einem Gebiet D auf einem Rechteck [mm] $R=\lbrace (z,w):|z-z_0|
[mm] $|f(z,w_1)-f(z-w_2)| \leq sup_{(z,w) \in R}|f_w(z,w)||w_1-w_2|$ [/mm]

hierbei ist [mm] $f_w$ [/mm] die partielle Ableitung von f in Richtung w mit komplexem w.

        
Bezug
Abschätzung einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:05 Do 27.09.2018
Autor: fred97


> Hallo,
>  ih beziehe mich
> []auf Seite 60 unten - Funktionentheorie
> auf die Abschätzung zur Lipschitz-Eigenschaft.
>  Kann mir jemand erklären, warum für eine holomorphe
> Funktion f auf einem Gebiet D auf einem Rechteck [mm]R=\lbrace (z,w):|z-z_0|
> nach der Standardabschätzung für Integrale gilt, dass
>  
> [mm]|f(z,w_1)-f(z-w_2)| \leq sup_{(z,w) \in R}|f_w(z,w)||w_1-w_2|[/mm]
>
> hierbei ist [mm]f_w[/mm] die partielle Ableitung von f in Richtung w
> mit komplexem w.


Ich übernehme die Bezeichnungen aus Satz 13.3 und setze $L:= [mm] \sup \{|f_w(z,w)|:(z,w) \in R\}$. [/mm] Nun sei $z$ mit [mm] $|z-z_0|
Sind nun [mm] w_1 [/mm] und [mm] w_2 [/mm] so, dass [mm] (z,w_1),(z,w_2) \in [/mm] R, so def. den Weg c:[0,1] [mm] \to \IC [/mm] durch

[mm] c(t)=w_1+t(w_2-w_1). [/mm]

Damit ist

[mm] $f(z,w_2)-f(z,w_1)=g(w_2)-g(w_1)=g(c(1))-g(c(0))= \int_c [/mm] g'(u) du.$

Also

(*) $ [mm] |f(z,w_2)-f(z,w_1)|=|\int_c [/mm] g'(u) du|.$

Auf  dem Weg c ist $ |g'(u)| [mm] \le [/mm] L$ und die Länge des Weges c ist [mm] =|w_2-w_1| [/mm]

Die Standardabschätzung für Wegintegrale liefert dann

[mm] $|\int_c [/mm] g'(u) du| [mm] \le L|w_2-w_1|.$ [/mm]

Aus (*) folgt dann das Gewünschte.



Bezug
                
Bezug
Abschätzung einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:30 Fr 28.09.2018
Autor: Maxi1995

Vielen Dank, das ist mir jetzt klar geworden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]