www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Abschätzung
Abschätzung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung: Verteilungsabschätzung
Status: (Frage) beantwortet Status 
Datum: 18:26 Mo 02.08.2010
Autor: Riesenradfahrrad

Hallo!

Ich habe ein Problem Lösungshinweise zu einer Stochastikaufgabe zu verstehen, darin heißt es:

[mm] $P(X\geq n)\leq P(X(X-1)\ldots(X-n+1)\geq [/mm] n!)$

Ich sehe hierbei nicht ein, wieso die rechte Seite auch größer sein kann (habe es mit ein paar Beispielen gerechnet, da waren die beiden Bedingungen immer gleichwertig.)

Wäre sehr dankbar für Hilfe!

Gruß,
Lorenz

        
Bezug
Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Mo 02.08.2010
Autor: gfm


> Hallo!
>  
> Ich habe ein Problem Lösungshinweise zu einer
> Stochastikaufgabe zu verstehen, darin heißt es:
>  
> [mm]P(X\geq n)\leq P(X(X-1)\ldots(X-n+1)\geq n!)[/mm]
>  
> Ich sehe hierbei nicht ein, wieso die rechte Seite auch
> größer sein kann (habe es mit ein paar Beispielen
> gerechnet, da waren die beiden Bedingungen immer
> gleichwertig.)
>  
> Wäre sehr dankbar für Hilfe!
>  
> Gruß,
>  Lorenz

P(x)=:x(x-1)*...(x-n+1) hat bei P(n) den Wert n! und ist für [mm] x\ge [/mm] n sicher größer als n!, da es sich um ein Polynom mit dem führenden Term [mm] x^n [/mm] und mit genau den Nullstellen 0,1,2,...,n-1 handelt. Wenn der Grad gerade ist, gibt es aber noch negative Argumente, die zu Werten [mm] P(x)\ge [/mm] n führen.

LG

gfm

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]