Abschätzung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien $x, [mm] x_0, [/mm] y, [mm] y_0 \in \mathbb{R}$, [/mm] und sei [mm] $\epsilon [/mm] > 0$ vorgegeben. Beweisen Sie:
Wenn [mm] $\vert [/mm] x - [mm] x_0 \vert [/mm] < min(1, [mm] \frac{\epsilon}{2(\vert y_0 \vert + 1)})$ [/mm] und [mm] $\vert [/mm] y - [mm] y_0 \vert [/mm] < [mm] \frac{\epsilon}{2(\vert x_0 \vert + 1)}$, [/mm] dann gilt [mm] $\vert [/mm] xy - [mm] x_0 y_0 \vert [/mm] < [mm] \epsilon$. [/mm] |
Hallo,
ich versuche mich an dieser Aufgabe indem ich bei [mm] $\vert [/mm] xy - [mm] x_0 y_0 \vert [/mm] < [mm] \epsilon$ [/mm] starte und versuche, zu einer wahren Aussage zu kommen. Leider weiß ich irgendwo nicht weiter:
[mm] $\vert [/mm] xy - [mm] x_0 y_0 \vert [/mm] < [mm] \epsilon \Leftrightarrow \vert [/mm] x(y - [mm] y_0) [/mm] + [mm] y_0(x [/mm] - [mm] x_0) \vert [/mm] < [mm] \epsilon \Leftarrow \vert [/mm] x(y - [mm] y_0) \vert [/mm] + [mm] \vert y_0(x [/mm] - [mm] x_0) \vert [/mm] < [mm] \epsilon \Leftrightarrow \vert [/mm] x [mm] \vert \vert [/mm] y - [mm] y_0 \vert [/mm] + [mm] \vert y_0 \vert \vert [/mm] x - [mm] x_0 \vert [/mm] < [mm] \epsilon \Leftarrow \frac{\vert x \vert \epsilon}{2(\vert x_0 \vert + 1)} [/mm] + [mm] \vert y_0 \vert \vert [/mm] x - [mm] x_0 \vert [/mm] < [mm] \epsilon \Leftrightarrow \vert y_0 \vert \vert [/mm] x - [mm] x_0 \vert [/mm] < [mm] \epsilon [/mm] - [mm] \frac{\vert x \vert \epsilon}{2(\vert x_0 \vert + 1)} \Leftrightarrow \vert y_0 \vert \vert [/mm] x - [mm] x_0 \vert [/mm] < [mm] \epsilon [/mm] (1 - [mm] \frac{\vert x \vert}{2(\vert x_0 \vert + 1)}) \Leftrightarrow\frac{x - x_0}{1 - \frac{\vert x \vert}{2(\vert x_0 \vert + 1)}} [/mm] < [mm] \frac{\epsilon}{\vert y_0 \vert} \Leftrightarrow \frac{\vert x - x_0 \vert 2(\vert x_0 \vert + 1)}{2(\vert x_0 \vert + 1) - \vert x \vert} [/mm] < [mm] \frac{\epsilon}{\vert y_0 \vert} \Leftrightarrow \frac{\vert x - x_0 \vert (\vert x_0 \vert + 1)}{2(\vert x_0 \vert + 1) - \vert x \vert} [/mm] < [mm] \frac{\epsilon}{2 \vert y_0 \vert}$
[/mm]
Vielen Dank und Gruß,
Martin
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:40 Fr 27.11.2020 | Autor: | fred97 |
> Seien [mm]x, x_0, y, y_0 \in \mathbb{R}[/mm], und sei [mm]\epsilon > 0[/mm]
> vorgegeben. Beweisen Sie:
>
> Wenn [mm]\vert x - x_0 \vert < min(1, \frac{\epsilon}{2(\vert y_0 \vert + 1)})[/mm]
> und [mm]\vert y - y_0 \vert < \frac{\epsilon}{2(\vert x_0 \vert + 1)}[/mm],
> dann gilt [mm]\vert xy - x_0 y_0 \vert < \epsilon[/mm].
> Hallo,
>
> ich versuche mich an dieser Aufgabe indem ich bei [mm]\vert xy - x_0 y_0 \vert < \epsilon[/mm]
> starte und versuche, zu einer wahren Aussage zu kommen.
Das ist keine gute Idee !
> Leider weiß ich irgendwo nicht weiter:
>
> [mm]\vert xy - x_0 y_0 \vert < \epsilon \Leftrightarrow \vert x(y - y_0) + y_0(x - x_0) \vert < \epsilon \Leftarrow \vert x(y - y_0) \vert + \vert y_0(x - x_0) \vert < \epsilon \Leftrightarrow \vert x \vert \vert y - y_0 \vert + \vert y_0 \vert \vert x - x_0 \vert < \epsilon \Leftarrow \frac{\vert x \vert \epsilon}{2(\vert x_0 \vert + 1)} + \vert y_0 \vert \vert x - x_0 \vert < \epsilon \Leftrightarrow \vert y_0 \vert \vert x - x_0 \vert < \epsilon - \frac{\vert x \vert \epsilon}{2(\vert x_0 \vert + 1)} \Leftrightarrow \vert y_0 \vert \vert x - x_0 \vert < \epsilon (1 - \frac{\vert x \vert}{2(\vert x_0 \vert + 1)}) \Leftrightarrow\frac{x - x_0}{1 - \frac{\vert x \vert}{2(\vert x_0 \vert + 1)}} < \frac{\epsilon}{\vert y_0 \vert} \Leftrightarrow \frac{\vert x - x_0 \vert 2(\vert x_0 \vert + 1)}{2(\vert x_0 \vert + 1) - \vert x \vert} < \frac{\epsilon}{\vert y_0 \vert} \Leftrightarrow \frac{\vert x - x_0 \vert (\vert x_0 \vert + 1)}{2(\vert x_0 \vert + 1) - \vert x \vert} < \frac{\epsilon}{2 \vert y_0 \vert}[/mm]
>
> Vielen Dank und Gruß,
>
> Martin
1. Schritt: [mm] $|x|=|x-x_0+x_0| \le |x-x_0|+|x_0| <1+|x_0|.
[/mm]
Wir merken uns (1): $|x| [mm] <1+|x_0|.$
[/mm]
2. Schritt:
[mm] $|xy-x_0y_0| =|xy-xy_0+xy_0-x_0y_0| =|x(y-y_0)+y_0(x-x_0)| [/mm] $
Mit der Dreiecksungleichung bekommen wir
(2) [mm] $|xy-x_0y_0| \le |x||y-y_0|+|y_0||x-x_0|<(1+|x_0|)(|y-y_0|+|y_0||x-x_0|$
[/mm]
Hier wurde (1) verwendet.
Nun ist
(3) $ [mm] \vert [/mm] y - [mm] y_0 \vert [/mm] < [mm] \frac{\epsilon}{2(\vert x_0 \vert + 1)} [/mm] $
und
[mm] $\vert [/mm] x - [mm] x_0 \vert [/mm] < [mm] \frac{\epsilon}{2(\vert y_0 \vert + 1)}) [/mm] $
Die letzte Ungleichung liefert noch
(4) [mm] |x-x_0| <\epsilon/2.$
[/mm]
Setze (3) und (4) in die Ungleichung (2) ein, dann bekommst Du
$ [mm] \vert [/mm] xy - [mm] x_0 y_0 \vert [/mm] < [mm] \epsilon/2+ \epsilon/2 [/mm] = [mm] \epsilon [/mm] $.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:05 Fr 27.11.2020 | Autor: | sancho1980 |
Oh Gott, darauf wär ich nie im Leben gekommen ..
|
|
|
|
|
Moment, ich dachte grad ich hätte es, aber sowie ich es gerade sauber aufschreiben will, merke ich Folgendes:
Mit [mm] $\vert [/mm] x - [mm] x_0 \vert [/mm] < min(1, [mm] \frac{\epsilon}{2(\vert y_0 \vert + 1)})$ [/mm] folgt:
1) [mm] $\vert [/mm] x - [mm] x_0 \vert [/mm] < [mm] \frac{\epsilon}{2}$
[/mm]
2) [mm] $\vert [/mm] x [mm] \vert [/mm] = [mm] \vert [/mm] x - [mm] x_0 [/mm] + [mm] x_0 \vert \le \vert [/mm] x - [mm] x_0 \vert [/mm] + [mm] \vert x_0 \vert [/mm] < 1 + [mm] \vert x_0 \vert$
[/mm]
Damit folgt:
[mm] $\vert [/mm] xy - [mm] x_0 y_0 \vert [/mm] = [mm] \vert [/mm] xy - x [mm] y_0 [/mm] + x [mm] y_0 [/mm] - [mm] x_0 y_0 \vert [/mm] = [mm] \vert [/mm] x(y - [mm] y_0) [/mm] + [mm] y_0(x [/mm] - [mm] x_0) \vert \le \vert [/mm] x [mm] \vert \vert [/mm] y - [mm] y_0 \vert [/mm] + [mm] \vert y_0 \vert \vert [/mm] x - [mm] x_0 \vert [/mm] < (1 + [mm] \vert x_0 \vert) \vert [/mm] y - [mm] y_0 \vert [/mm] + [mm] \vert y_0 \vert \vert [/mm] x - [mm] x_0 \vert [/mm] < (1 + [mm] \vert x_0 \vert)(\frac{\epsilon}{2(\vert x_0 \vert + 1)}) [/mm] + [mm] \vert y_0 \vert (\frac{\epsilon}{2})$.
[/mm]
Wie bekomme ich denn jetzt das [mm] $\vert y_0 \vert$ [/mm] noch weg?
|
|
|
|