www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitungsregeln
Ableitungsregeln < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungsregeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:27 So 30.08.2009
Autor: Blackpearl

Aufgabe
[mm] f(x)=\wurzel{2x}+\bruch{1}{tx} [/mm] ; [mm] f(x)=\bruch{1}{2k}x^{8k}-8x^{-8k}; \bruch{x}{x} [/mm]

Hallo,
mein problem liegt darin diese beiden Funktionen abzuleiten.
Bei der ersten Funktion weiss ich nicht was mit der 2 unter der Wurzel geschehen muss und bei der anderen Funktionen bin ich voll aus dem Konzept da weiss ich schonma garnicht womit ich anfangen soll oder was ich machen soll und bei der dritten weiss ich nicht ob man das überhaupt ableiten kann mein bruder sagt mir x/x ist 1 aber ich denk mir mann kann das ableiten indem man das x vom zähler runterholt und dann hat man [mm] xx^{-1} [/mm] aber wenn da dann x*x steht wird daraus [mm] x^2? [/mm]
Deswegen fänd ich es nett wenn sie mir eben helfen könnten und diese beiden Funktionen und dem [mm] \bruch{x}{x} [/mm] mit bischen erklären ableiten könnten.

        
Bezug
Ableitungsregeln: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 So 30.08.2009
Autor: Arcesius

Hallo

> [mm]f(x)=\wurzel{2x}+\bruch{1}{tx}[/mm] ;
> [mm]f(x)=\bruch{1}{2k}x^{8k}-8x^{-8k}; \bruch{x}{x}[/mm]
>  Hallo,
>  mein problem liegt darin diese beiden Funktionen
> abzuleiten.
>  Bei der ersten Funktion weiss ich nicht was mit der 2
> unter der Wurzel geschehen muss und bei der anderen
> Funktionen bin ich voll aus dem Konzept da weiss ich
> schonma garnicht womit ich anfangen soll oder was ich
> machen soll und bei der dritten weiss ich nicht ob man das
> überhaupt ableiten kann mein bruder sagt mir x/x ist 1
> aber ich denk mir mann kann das ableiten indem man das x
> vom zähler runterholt und dann hat man [mm]xx^{-1}[/mm] aber wenn
> da dann x*x steht wird daraus [mm]x^2?[/mm]
>  Deswegen fänd ich es nett wenn sie mir eben helfen
> könnten und diese beiden Funktionen und dem [mm]\bruch{x}{x}[/mm]
> mit bischen erklären ableiten könnten.

1) f(x) = [mm] \wurzel{2x} [/mm] + [mm] \bruch{1}{tx} [/mm]

Beachte hier, dass [mm] \wurzel{2x} [/mm] = [mm] \wurzel{2}\wurzel{x}, [/mm] und [mm] \bruch{1}{tx} [/mm] = [mm] \bruch{1}{t}*x^{-1}. [/mm] So sollte es eigentlich gehen..


2) f(x) = [mm] \bruch{1}{2k}x^{8k}-8x^{-8k} [/mm]

Lass dich hier von den k's nicht irritieren.. du sollst diese Funktion ganz normal nach x ableiten.. wo liegt dein Problem genau?


3) f(x) = [mm] \bruch{x}{x} [/mm]

Das lässt sich schon ableiten.. Wenn du das folgendermassen schreibst, wie du es woltlest, also [mm] x*x^{-1} [/mm] musst du beachten, dass [mm] x*x^{-1} \not= x^{2}, [/mm] sondern [mm] x*x^{-1} [/mm] = [mm] x^{1-1} [/mm] = [mm] x^{0} [/mm] = 1 (Potenzgesetze). Und somit, abgeleitet nach x gibt das f'(x) = 0.


Ich hoffe, du kommst weiter.. sonst, einfach deine Rechenschritte posten und wie analysieren die Schwierigkeiten zusammen :)

Grüsse, Amaro

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]