www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - Ableitungsregel beweisen
Ableitungsregel beweisen < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungsregel beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Do 11.03.2010
Autor: vauge

Aufgabe
Für Potenzfunktionen mit natürlichen Exponenten [mm] f(x)=x^n [/mm] (n [mm] \in [/mm] N) kann die Ableitung in der Form f'(x) = n * x^(n-1) angegeben werden. Beweisen Sie diese Ableitungsregel mithilfe des Beweisverfahrens der vollständigen Induktion.

Ganz einfache Frage: Wie funktioniert diese Aufgabe? Wir haben die vollständige Induktion in der Schule leider nie behandelt, dennoch würde ich diese Aufgabe gerne gelöst haben und habe keine Ahnung, wie es geht (Die grobe Vorgehensweise bei der vollständigen Induktion kenne ich, auch wenn sie nie im Unterricht behandelt wurde, es reicht also eine grobe Erklärung).

Vielen Dank.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitungsregel beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 Do 11.03.2010
Autor: angela.h.b.


> Für Potenzfunktionen mit natürlichen Exponenten [mm]f(x)=x^n[/mm]
> (n [mm]\in[/mm] N) kann die Ableitung in der Form f'(x) = n *
> x^(n-1) angegeben werden. Beweisen Sie diese
> Ableitungsregel mithilfe des Beweisverfahrens der
> vollständigen Induktion.
>  Ganz einfache Frage: Wie funktioniert diese Aufgabe? Wir
> haben die vollständige Induktion in der Schule leider nie
> behandelt, dennoch würde ich diese Aufgabe gerne gelöst
> haben und habe keine Ahnung, wie es geht (Die grobe
> Vorgehensweise bei der vollständigen Induktion kenne ich,
> auch wenn sie nie im Unterricht behandelt wurde, es reicht
> also eine grobe Erklärung).

Hallo,

[willkommenmr].


Zu einer Induktion gehören

Induktionsanfang,
Induktionsannahme,
Induktionsschluß.

Induktionsanfang:
zeige, daß die zu beweisende Aussage für n=1 gilt.

Induktionsannahme:
Nimm an, daß die Aussage für ein [mm] n\in \IN [/mm] gilt. (Hierfür ist nichts weiter zu tun)

Induktionsschluß:
Zeige, daß die Aussage bei obiger Annahme auch für n+1 gilt.

Du mußt vorrechnen, daß für [mm] f(x)=x^{n+1} [/mm] die Ableitung [mm] f'(x)=(n+1)x^n [/mm] ist.
Spontan fiele mir hier ein, [mm] x^{n+1} [/mm] zu schreiben als [mm] x*x^n [/mm] und dann mit der Produktregel abzuleiten.

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]