www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitungsproblem
Ableitungsproblem < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungsproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:37 Mi 14.05.2008
Autor: Surfer

Hallo, ich soll folgende Funktion 2mal ableiten, es handelt sich um einen Bruch, also habe ich die Quotientenregel verwendet und den Vorfaktor aber stehen lassen, trotzdem komme ich nicht aufs Ergebnis!

also:
[mm] f:\IR\to\IR: x\mapsto \bruch{1}{4} [/mm] * [mm] \bruch{x^{3}+x^{2}-2x}{x^{2}-3x+2} [/mm]

wenn ich jetzt die Quoteintenregel anwende komme ich auf:

f`(x) = [mm] \bruch{1}{4}* \bruch{x^{4}-6x^{3}+5x^{2}+4x-4}{x^{4}-6x^{3}+13x^{2}-12x+4} [/mm]

stimmt das ?
also die Lösungen sind:
f´(x) = [mm] \bruch{x^{2}-4x-4}{4(x-2)^{2}} [/mm]
f´´(x) = [mm] 4(x-2)^{-3} [/mm]

??? Wie komme ich da drauf?
lg Surfer

        
Bezug
Ableitungsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 11:56 Mi 14.05.2008
Autor: Tyskie84

Hi,

> Hallo, ich soll folgende Funktion 2mal ableiten, es handelt
> sich um einen Bruch, also habe ich die Quotientenregel
> verwendet und den Vorfaktor aber stehen lassen, trotzdem
> komme ich nicht aufs Ergebnis!
>  
> also:
>  [mm]f:\IR\to\IR: x\mapsto \bruch{1}{4}[/mm] *
> [mm]\bruch{x^{3}+x^{2}-2x}{x^{2}-3x+2}[/mm]
>  
> wenn ich jetzt die Quoteintenregel anwende komme ich auf:
>  
> f'(x) = [mm]\bruch{1}{4}* \bruch{x^{4}-6x^{3}+5x^{2}+4x-4}{x^{4}-6x^{3}+13x^{2}-12x+4}[/mm]
>  

[notok] leider nicht. da hast du dich etwas verrechnet.

> stimmt das ?
> also die Lösungen sind:
>  f´(x) = [mm]\bruch{x^{2}-4x-4}{4(x-2)^{2}}[/mm]
>  f´´(x) = [mm]4(x-2)^{-3}[/mm]
>  

Diese Ableitungen stimmen. Fange nochmal an und dann kommst du sicher auf diese Ergebnisse.

> ??? Wie komme ich da drauf?
>  lg Surfer

[hut] Gruß

Bezug
        
Bezug
Ableitungsproblem: erst vereinfachen
Status: (Antwort) fertig Status 
Datum: 12:33 Mi 14.05.2008
Autor: Loddar

Hallo Surfer!


Du kannst Dir die Arbeit erheblich vereinfachen, wenn Du im Zähler und Nenner erst faktorisiert und anschließend kürzt.

Dann verbleibt als Funktionsterm: $f(x) \ = \ [mm] \bruch{1}{4}*\bruch{x-2}{x+2}$ [/mm] .


Gruß
Loddar


Bezug
        
Bezug
Ableitungsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Mi 14.05.2008
Autor: schachuzipus

Hallo,

auch von meiner Seite etwas Senf dazu ;-)

s. Loddars post zur Vereinfachung und Arbeitserleichterung ;-) ...

> Hallo, ich soll folgende Funktion 2mal ableiten, es handelt
> sich um einen Bruch, also habe ich die Quotientenregel
> verwendet und den Vorfaktor aber stehen lassen, trotzdem
> komme ich nicht aufs Ergebnis!
>  
> also:
>  [mm]f:\IR\to\IR: x\mapsto \bruch{1}{4}[/mm] *
> [mm]\bruch{x^{3}+x^{2}-2x}{x^{2}-3x+2}[/mm]
>  
> wenn ich jetzt die Quoteintenregel anwende komme ich auf:
>  
> f'(x) = [mm]\bruch{1}{4}* \bruch{x^{4}-6x^{3}+5x^{2}+4x-4}{x^{4}-6x^{3}+13x^{2}-12x+4}[/mm] [daumenhoch]

entgegen Tyskies Meinung, bin ich der Ansicht, dass diese Ableitung richtig ist.

Hier kannst du aber noch kräftig faktorisieren und kürzen:

[mm] $f'(x)=\bruch{1}{4}* \bruch{x^{4}-6x^{3}+5x^{2}+4x-4}{x^{4}-6x^{3}+13x^{2}-12x+4}=\frac{1}{4}\cdot{}\frac{(x^2-4x-4)(x-1)^2}{(x-1)^2(x-2)^2}$ [/mm]

Da kannst du dann kürzen und kommst genau auf den Ausdruck in der Lösung

>  
> stimmt das ?
> also die Lösungen sind:
>  f´(x) = [mm]\bruch{x^{2}-4x-4}{4(x-2)^{2}}[/mm]
>  f´´(x) = [mm]4(x-2)^{-3}[/mm]
>  
> ??? Wie komme ich da drauf?
>  lg Surfer

LG

schachuzipus


Bezug
                
Bezug
Ableitungsproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 Mi 14.05.2008
Autor: Surfer

wie komm ich denn dann vollends von der F´(x) auf die zweite Ableitung?

lg Surfer

Bezug
                        
Bezug
Ableitungsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Mi 14.05.2008
Autor: Tyskie84

Hi,

Abzuleiten ist nun folgendes:

[mm] \bruch{x^2-4x-4}{4\cdot(x-2)^{2}}. [/mm] Verwende die Quotientenregel dann ist:

[mm] \\u=x^2-4x-4 [/mm]
[mm] \\u'=2x-4 [/mm]
[mm] \\v=4(x-2)^{2} [/mm]
[mm] \\v'=8\cdot(x-2) [/mm]
Dann haben wir: [mm] \bruch{(2x-4)\cdot\\4\cdot(x-2)²-(x^2-4x-4)\cdot\\8\cdot(x-2)}{(x-2)^{4}}=\bruch{(2x-4)\cdot(4x-8)-(x^2-4x-4)\cdot\\8}{(x-2)^{3}} [/mm] Das nun ausmultiplizieren und du kommst zu [mm] \bruch{4}{(x-2)^{3}} [/mm]

[hut] Gruß

Bezug
        
Bezug
Ableitungsproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:51 Mi 14.05.2008
Autor: Tyskie84

Hallo surfer,

Da hab ich wohl Mist gebaut [bonk]. Meine Nachredner haben Recht. Ich hab mich wohl verrechnet, denn deine Ableitung war vollkommen richtig.

[hut] Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]