www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitungsfunktion
Ableitungsfunktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungsfunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:21 Sa 07.11.2009
Autor: Topspinkiller

Aufgabe 1
f(x)=2x³-x²   x0=1

Aufgabe 2
s(t)=4t²   t0=2

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Aufgabe 1:
Ich weis, dass bei der aufgabe f'(x)=4 raus kommt, da ich den Lösungsweg mit dem Hochzahlen vorziehen gemacht habe.
Da ich noch die ausfühliche Lösung auch gerne mach würde hab ich schon angesetzt:
m(h)lim h-->0   (2(1+h)³-1):h
(2(1+h)(1+h)(1+h)-1):h
doch dann komm ich nicht mehr weiter

Aufgabe2:
Ich weis wieder, dass f'(x)=16 rauskommt
Doch ich bleib hängen bei dem Schritt
(4(2+h)²-16):h
heißt der nächste Schritt
1.   (4*4+2*2*h+h²-16):h
oder
2.   (4(4+2*2*h+h²)-16):h  

Danke für die Hilfe

        
Bezug
Ableitungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Sa 07.11.2009
Autor: schachuzipus

Hallo Anna,

> [mm] f(x)=2x^3-x^2, x_0=1 [/mm]
>  [mm] s(t)=4t^2, t_0=2 [/mm]
>  
> ch habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Aufgabe 1:
>  Ich weis, dass bei der aufgabe f'(x)=4 raus kommt, da ich
> den Lösungsweg mit dem Hochzahlen vorziehen gemacht habe.
>  Da ich noch die ausfühliche Lösung auch gerne mach
> würde hab ich schon angesetzt:
>  m(h)lim h-->0   [mm] (2(1+h)^3-1):h [/mm]
>  (2(1+h)(1+h)(1+h)-1):h
>  doch dann komm ich nicht mehr weiter

Hmm, du musst doch [mm] $\lim\limits_{h\to 0}\frac{f(1+h)-f(1)}{h}$ [/mm] berechnen.

Rechne die Summanden einzeln aus:

1) [mm] $f(1+h)=2(1+h)^3-(1+h)^2=2(1+3h+3h^2+h^3)-(h^2+2h+1)=2h^3+6h^2+6h+2-h^2-2h-1=2h^3+5h^2+4h+1$ [/mm]

2) [mm] $f(1)=2\cdot{}1^3-1^2=1$ [/mm]

Also [mm] $\frac{f(1+h)-f(1)}{h}=\frac{2h^3+5h^2+4h+1-1}{h}=\frac{2h^3+5h^2+4h}{h}$ [/mm]

Nun kannst du im Zähler h ausklammern, es gegen das h im Nenner kürzen und dann gefahrlos den Grenzübergang [mm] $h\to [/mm] 0$ machen.

>  
> Aufgabe2:
>  Ich weis wieder, dass f'(x)=16 rauskommt
> Doch ich bleib hängen bei dem Schritt
>  (4(2+h)²-16):h [ok]
>  heißt der nächste Schritt
>  1.   (4*4+2*2*h+h²-16):h
>  oder
> 2.   (4(4+2*2*h+h²)-16):h  [ok]

Letzteres natürlich, es ist ja [mm] $(2+h)^2$ [/mm] eine binomische Formel.

Rechne nun die Klammer aus und du wirst sehen, dass sich die 16 weghebt. Es bleiben im Zähler lauter Terme, die h als Faktor enthalten.

Wie in der anderen Aufgabe kannst du wieder ausklammern, kürzen und dann den Grenzübergang machen

LG

schachuzipus

>
> Danke für die Hilfe


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]