www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitungen von Ln-Funktionen
Ableitungen von Ln-Funktionen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen von Ln-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:44 Mi 09.02.2011
Autor: dudu93

Aufgabe
Leite ab:

1.) f(x)= [mm] \bruch{1}{lnx} [/mm]

2.) f(x)= [mm] \bruch{lnx}{x} [/mm]

3.) f(x)= [mm] \bruch{1+x}{ln(1-x)} [/mm]

Hallo. Ich komme mit den Ableitungen der oben aufgeführten Ln-Funktionen nicht so gut zurecht.

Bei der ersten Aufgabe habe ich gehört, dass man aus der Funktion f(x)= [mm] \bruch{1}{lnx} [/mm] auch einfach lnx^-1 schreiben kann. Aber warum ^-1? Folgend lautet die erste Ableitung bei mir dann:

f(x)= [mm] (-1)*\bruch{1}{x} [/mm] = [mm] -\bruch{1}{x} [/mm]

Ist das so richtig?

---------------------

Bei Aufgabe 2 habe ich die Quotientenregel angewendet:

f(x)= [mm] \bruch{lnx}{x} [/mm]

f'(x)= [mm] \bruch{1/x*x-lnx*1}{x^2} [/mm] = [mm] \bruch{1-lnx}{x^2} [/mm]

--------------------

Bei der dritten Aufgabe komme ich gar nicht weiter. Muss ich erst den Nenner ausmultiplizieren, um danach die Quotientenregel anzuwenden?

Ich würde mich über Hilfe sehr freuen,

LG

        
Bezug
Ableitungen von Ln-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Mi 09.02.2011
Autor: kushkush

Hallo dudu93,

1. Dein Resultat stimmt nicht. Verwende hier die Kettenregel. [mm] ln(x)^{-1} [/mm] kannst du ableiten wie [mm] (x+1)^{-1}. [/mm]


2. richtig

3. das kannst du mit der quotientenregel oder wie jeden Bruch auch mit der produktregel ausrechnen, wobei für den Nenner nochmal die Kettenregel angewendet wird.
Als Lösung bekomme ich hier :
[mm] $\frac{ln(1-x)+\frac{1+x}{1-x}}{ln(1-x)^{2}}$ [/mm]


Gruss

kushkush


Bezug
                
Bezug
Ableitungen von Ln-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Mi 09.02.2011
Autor: dudu93

Danke für die Antwort. Also bei Aufgabe 1 habe ich jetzt folgendes rausbekommen:

f(x)= [mm] \bruch{1}{lnx} [/mm] = (lnx)^-1

f'(x)= [mm] -1*(lnx)^-2*\bruch{1}{x} [/mm]  = [mm] lnx^-2*\bruch{1}{x} [/mm]

Aber woher weiß ich denn nun, dass man [mm] \bruch{1}{lnx} [/mm] auch als (lnx)^-1 schreiben kann?

________________________________

Bei der dritten Aufgabe komme ich trotzdem nicht weiter.

Die erste Ableitung lautet bei mir:

f'(x)= [mm] \bruch{1*ln(1-x)-1+x*ln(-1x)*(-1)}{ln(1-x)^2} [/mm]

Bezug
                        
Bezug
Ableitungen von Ln-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Mi 09.02.2011
Autor: kushkush

Hallo,


1. [mm] ln(x)^{-1}=\frac{1}{ln(x)} [/mm] folgt aus den Potenzgesetzen.  Die Ableitung lautet [mm] (ln(x)^{-1})'= -(1)\cdot (1)\cdot ln(x)^{-2}. [/mm]

3.  Die Ableitung von (ln(1-x))' = [mm] -\frac{1}{1-x}, [/mm] das Minus kommt von der inneren Ableitung. Die Ableitungen in die Quotientenregel einsetzen.

Gruss

kushkush

Bezug
                                
Bezug
Ableitungen von Ln-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Mi 09.02.2011
Autor: dudu93

Okay, die Lösung von Aufg. 3 habe ich jetzt raus. Vielen Dank.

Nun wollte ich noch bei den folgenden Aufgaben etwas fragen.

a.) f(x)= [mm] ln\wurzel{2}x [/mm]

Für die Wurzel kann man ja auch ^0,5 schreiben.
Durch das Logarithmusgesetz habe ich die 0,5 vorgeholt:

0,5ln(2x)

Die Ableitung von mir ist dann:

f'(x)= [mm] \bruch{0,5}{2x}*2 [/mm] = [mm] \bruch{1}{2x} [/mm]

Allerdings soll diese Lösung falsch sein. Rauskommen soll nämlich [mm] \bruch{1}{x}. [/mm] Aber wo liegt mein Fehler?

_______________________________

Zum Schluss wollte ich noch fragen, ob man die folgende Funktion auch durch die Kettenregel ableiten kann:

f(x)= [mm] ln\wurzel{1-x} [/mm] = [mm] ln(1-x)^0,5 [/mm] = 0,5ln(1-x)

Meine Lösung dazu:

f'(x)= [mm] \bruch{1}{2}*\bruch{1}{1-x}*(-1) [/mm] = [mm] \bruch{-1}{2-2x} [/mm]

Bezug
                                        
Bezug
Ableitungen von Ln-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Mi 09.02.2011
Autor: Steffi21

Hallo

a) bedenke NUR die 2 steht unter der Wurzel also [mm] \bruch{1}{\wurzel{2}x}*\wurzel{2} [/mm]

bei der zweiten Aufgabe hast du doch Kettenregel gemacht, äußere Ableitung mal innere Ableitung, deine Ableitung ist korrekt,

beachte immer den Definitionsbereich

Steffi

Bezug
                                                
Bezug
Ableitungen von Ln-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Mi 09.02.2011
Autor: dudu93

Danke für die Anwort. Die Aufg. a habe ich nun verstanden.

Bei Aufg. b) meinte ich mit der Kettenregel das hier:

f(x)= [mm] ln\wurzel{1-x} [/mm]

f'(x)= [mm] \bruch{1}{2}*(1-x)^-0,5*(-1) [/mm]

Ist es nicht so, dass zuerst die äußere Ableitung, also hier 0,5 wegen der Wurzel, dann der Wert in der Klammer. Der Exponent verkleinert sich um 1. Und dann noch mit der inneren Ableitung multipliziert. Kann man die Aufg. auch mit diesem Weg berechnen?

Bezug
                                                        
Bezug
Ableitungen von Ln-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Mi 09.02.2011
Autor: QCO

Deine Lösung von oben stimmt erstmal:
[mm]f' = \bruch{1}{2*(x-1)}[/mm]
Du kannst die Kettenregel immer anwenden, egal in welche Form du deine Anfangsgleichung gebracht hast. Wenn eine Funktion mehrmals 'verkettet' ist, musst du die Kettenregel aber rekursiv, also mehrmals anwenden.

Beispiel: Leite [mm]f = ln(\wurzel{1-x})[/mm] ab.
1) [mm](ln u)' = \bruch{1}{u}[/mm] Also [mm]f' = \bruch{1}{(\wurzel{1-x})'}[/mm]
2) Den inneren Term mit der Wurzel musst du nochmal mit Kettenregel ableiten.
[mm](\wurzel{1-x})' = \bruch{1}{2} * ( (1-x)' )^{-\bruch{1}{2}}[/mm].
3) Jetzt wenden wir die Kettenregel zum letzten mal auf 1-x an: [mm](1-x)' = -1[/mm].
4) Zusammengefasst:
[mm]f' = \bruch{1}{(\wurzel{1-x})'} = \bruch{1}{\wurzel{1-x}} * \bruch{1}{2} * ( (1-x)' )^{-\bruch{1}{2}} = \bruch{1}{\wurzel{1-x}} * \bruch{1}{2} * (1-x)^{-\bruch{1}{2}} * -1[/mm]

Bezug
        
Bezug
Ableitungen von Ln-Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Mi 09.02.2011
Autor: kamaleonti

Hi,

man müsste hier eigentlich noch die Stellen ausschließen, wo die Funktionen nicht diffbar ist:

a) x=0,1
b) x=0
c) x=0,1

Gruß,
Kamaleonti

Bezug
        
Bezug
Ableitungen von Ln-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Mo 14.02.2011
Autor: dudu93

Hallo. Ich habe jetzt noch mal zur Übung einige Funktionen abgeleitet. Könnt ihr bitte mal schauen, ob die Ableitungen so richtig sind:

a)
f(x)=xlnx
[mm] f'(x)=1*\bruch{1}{x}=\bruch{1}{x} [/mm]

b)
f(x)=x^2lnx
[mm] f'(x)=2x*\bruch{1}{x}=\bruch{2x}{x} [/mm]

c)
[mm] f(x)=\wurzel{x}lnx [/mm]
[mm] f'(x)=\bruch{wurzel{x}}{\bruch{1}{x}} [/mm]

d)
[mm] f(x)=\wurzel{2x}lnx [/mm]
[mm] f'(x)=\bruch{Wurzel 2}{1 durch x} [/mm]

e)
[mm] f(x)=\wurzel{x}ln2x [/mm]
[mm] f'(x)=\bruch{2 Wurzel x}{2x} [/mm]

f)
[mm] f(x)=\bruch{1}{lnx} [/mm]
[mm] f'(x)=\bruch{lnx-1/x}{lnx^2} [/mm]

Danke im voraus!

LG


Bezug
                
Bezug
Ableitungen von Ln-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Mo 14.02.2011
Autor: Tyskie84

Hallo,

leider ist keine Aufgabe richtig!

Zur ersten:

f(x)=x*ln(x)

Produktregel: f'(x)=u'(x)*v(x)+u(x)*v'(x)

u(x)=x
u'(x)=1
v(x)=ln(x)
[mm] v'(x)=\bruch{1}{x} [/mm]

f'(x)=?



Bezug
                        
Bezug
Ableitungen von Ln-Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:43 Mo 14.02.2011
Autor: dudu93

f'(x)=lnx+1

Ich habe es verstanden, danke!

Bezug
                                
Bezug
Ableitungen von Ln-Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 Mo 14.02.2011
Autor: Tyskie84

Hallo,

> f'(x)=lnx+1
>  

[daumenhoch]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]