www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitungen von Funktionen
Ableitungen von Funktionen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 So 28.03.2010
Autor: el_grecco

Aufgabe
Bestimmen Sie die Ableitungen folgender Fuktionen:

(a) [mm] $f(x)=a^{\wurzel{x^{2}+1}} (a>0,x\in\IR)$ [/mm]

Hallo.
Zu dieser Aufgabe habe ich einige Fragen:

1. Wie geht man bei solchen Aufgaben generell vor, d.h. muss man die Basis und den Exponenten immer getrennt voneinander ableiten?
2. Ich begreife nicht, warum in der Angabe im Exponenten eine Wurzel steht und im Punkt (i) heißt es für den Exponenten plötzlich n-te Wurzel. Welcher Gedanke steckt da dahinter?
3. Ist diese aufwändige Prozedur wie im Punkt (i) wirklich notwendig, denn schließlich genügt ein Blick in die Formelsammlung und man erfährt die Ableitung?

Vielen Dank.

Gruß
el_grecco


Musterlösung:

(i) Zunächst ist die Wurzelfunktion

[mm] $w_{n} [/mm] : [mm] \left] 0,\infty \right[\to\IR; w_{n}(y):=\wurzel[n]{y}$ [/mm]

differenzierbar:
[mm] $\forall [/mm] y>0 : [mm] w_{n}(y)=\wurzel[n]{y}=\exp\left( \bruch{1}{n}\ln(y) \right)$ [/mm] ist differenzierbar, weil die Abbildung [mm] $\exp$ [/mm] auf ganz [mm] $\IR$ [/mm] und die Abbildung [mm] $\ln$ [/mm] auf dem Intervall [mm] $(0,\infty)$ [/mm] differenzierbar, und damit auch die Komposition [mm] $\exp\left( \bruch{1}{n}\ln(y) \right)$ [/mm] auf [mm] $(0,\infty)$ [/mm] differenzierbar ist nach der Kettenregel.
Für die Abbildung gilt:

[mm] $w_{n}' \overset{Kettenregel}{=}\exp'\left( \bruch{1}{n}\ln(y) \right)*\left( \bruch{1}{n}\ln'(y) \right)=\exp\left( \bruch{1}{n}\ln(y) \right)*\bruch{1}{n}*\bruch{1}{y}=\bruch{1}{n}y^{\bruch{1}{n}-1}=\bruch{1}{n}y^{\bruch{1-n}{n}}=\bruch{1}{n}\wurzel[n]{y^{1-n}}=\bruch{1}{n}\bruch{1}{\wurzel[n]{y^{n-1}}}$ [/mm]


(ii) Auch die Funktion

[mm] $\alpha [/mm] : [mm] \left] 0,\infty \right[\to\IR;\alpha(x):=\alpha^{x}=\exp(x\ln(\alpha))$ [/mm]

ist als Komposition differenzierbarer Funktionen [mm] $(\exp$ [/mm] und $id)$ nach der Kettenregel differenzierbar mit der Ableitung

[mm] $\alpha'(x)\overset{Kettenregel}{=}\exp'(x\ln(a))*\ln(a)=\exp(x\ln(a))*\ln(a)=a^{x}\ln(a)$. [/mm]

Setzt man nun [mm] $h(x):=x^{2}+1$, [/mm] so ist $h$ als Polynom differenzierbar und es folgt:
[mm] $f(x)=a^{\wurzel{x^{2}+1}}=\alpha(\wurzel{x^{2}+1})=\alpha(w_{2}(h(x)))=(\alpha\circ w_{2}\circ [/mm] h)(x)$, d.h. [mm] $f=\alpha\circ w_{2}\circ [/mm] h$ ist als Komposition von drei differenzierbaren Funktionen nach Kettenregel differenzierbar, und für die Ableitung folgt:

[mm] $f'(x)\overset{Kettenregel}{=}\alpha'((w_{2}\circ h)(x))*(w_{2}\circ [/mm] h)'(x)$

[mm] $\overset{Kettenregel}{=}a^{\wurzel{x^{2}+1}}\ln(a)*w_{2}'(h(x))*h'(x)$ [/mm]

[mm] $\underset{(i)}{=}a^{\wurzel{x^{2}+1}}\ln(a)*\bruch{1}{2}\bruch{1}{\wurzel{x^{2}+1}}*2x$ [/mm]

[mm] $=a^{\wurzel{x^{2}+1}}\bruch{x\ln(a)}{\wurzel{x^{2}+1}}$ [/mm]   q.e.d.

        
Bezug
Ableitungen von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 So 28.03.2010
Autor: leduart

Hallo
in der "Musterlösung werden mehrere Funktionen behandelt, nicht nur eine:
i 1. Funktion  [mm] w_n(y)=\wurzel[n]{y}=y^{1/n} [/mm]
dann wird gezeigt, dass man erstmal die fkt in eine Exponentialfunktion um formt.
Dann wird nach Kettenregel abgeleitet.
(später wird w dann nochmal benutzt!)

ii 2.te fkt [mm] f(x)=a^x [/mm]
wieder umwandeln in e-fkt, dann differenzieren.

iii.
3. fkt [mm] f(x)=e^{\wurzel{h(x)}} [/mm] allgemein, bzw mit [mm] h(x)=x^2+1 [/mm]
dann wird wieder nach Kettenregel diff.

Deine Frage "muss man die Basis und den Exponenten immer getrennt voneinander ableiten? " ist falsch gestellt, die Basis wird gar nicht abgeleitet.
du hast nur verschachtelte Funktionen
bei $ [mm] f(x)=a^{\wurzel{x^{2}+1}} (a>0,x\in\IR) [/mm]
ist die äusserst fkt nämlich [mm] a^{g(x)} [/mm] also das a hoch nicht eine der fkt von denen man i.A. die Ableitung auswendig weiss. deshalb formt man [mm] a^b [/mm] in [mm] e^{b*lna} [/mm] um, da man von [mm] e^x=exp(x) [/mm] die Ableitung weiss (exp(x))'=exp(x)
wenn dann in exp(x) nicht x steht, sondern eine fkt, g(x)
dann sagt die Kettenregel:
(exp(g(x))'=exp(g(x)*g'(x)
wenn g selbst wieder g(h(x)) dann ist (g(h(x)))'=g'(h)*h'
wenn h wieder nochmal von k(x) abhängt.geht es immer so weiter.
guck dir die Herleitung unter dem Gesichtspunkt nochmal an und dann frag weiter.
Gruss leduart


Bezug
                
Bezug
Ableitungen von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 So 28.03.2010
Autor: el_grecco

Vielen Dank für die ausführliche Erklärung, leduart.
Ich gehe gerade die Aufgabe anhand deiner Ausführungen Schritt für Schritt durch, erhalte aber in gewisser Weise etwas anderes als die Musterlösung.

Um Dir mein Verständnisproblem zu verdeutlichen, möchte ich zeigen, wie ich vorgehe:
[mm] $\wurzel{x^{2}+1} \gdw (x^{2}+1)^{\bruch{1}{2}} \gdw \wurzel[2]{x^{2}+1} \gdw \exp(\bruch{1}{2}*\ln(x^{2}+1))$ [/mm]

Ist das falsch bzw. warum machen die das in der Musterlösung anders?

Bezug
                        
Bezug
Ableitungen von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 So 28.03.2010
Autor: schachuzipus

Hallo el_grecco,

> Vielen Dank für die ausführliche Erklärung, leduart.
>  Ich gehe gerade die Aufgabe anhand deiner Ausführungen
> Schritt für Schritt durch, erhalte aber in gewisser Weise
> etwas anderes als die Musterlösung.
>  
> Um Dir mein Verständnisproblem zu verdeutlichen, möchte
> ich zeigen, wie ich vorgehe:
>  [mm]\wurzel{x^{2}+1} \gdw (x^{2}+1)^{\bruch{1}{2}} \gdw \wurzel[2]{x^{2}+1} \gdw \exp(\bruch{1}{2}*\ln(x^{2}+1))[/mm]

Was soll das sein?

Äquivalenz zwischen Termen? Das ist unsinnig!

Und wieso formst du nur die Wurzel um?

Für $a>0$ ist [mm] $a^b=e^{\ln\left(a^b\right)}=e^{b\cdot{}\ln(a)}$ [/mm]

Also hier [mm] $a^{\sqrt{x^2+1}}=e^{\sqrt{x^2+1}\cdot{}\ln(a)}$ [/mm]

Das nach Kettenregel ableiten.

Es ist [mm] $\left[e^{g(x)}\right]'=e^{g(x)}\cdot{}g'(x)$ [/mm]

Den Wurzelausdruck musst du seinerseits ebenfalls mit der Kettenregel erschlagen.

Dazu bietet sich die Umformung in eine Potenz - so wie du auch angesetzt hast, an:

[mm] $\sqrt{x^2+1}=\left(x^2+1\right)^{\frac{1}{2}}$ [/mm] ...

>  
> Ist das falsch bzw. warum machen die das in der
> Musterlösung anders?

Es wird überhaupt nicht klar, was deine Terme da sollen?!

Schreibe mal genauer und vor allem richtig auf, was du uns eigentlich sagen willst ...

Gruß

schachuzipus


Bezug
                                
Bezug
Ableitungen von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 So 28.03.2010
Autor: el_grecco

Danke, schachuzipus.
Das Problem war, dass ich mich nur auf den Exponenten beschränkt und die Kettenregel nicht richtig verwendet habe.

Ich habe versucht weiterzukommen, stoße aber ziemlich bald schon an meine Grenzen.

> Es ist [mm]\left[e^{g(x)}\right]'=e^{g(x)}\cdot{}g'(x)[/mm]
>  
> Den Wurzelausdruck musst du seinerseits ebenfalls mit der
> Kettenregel erschlagen.
>  
> Dazu bietet sich die Umformung in eine Potenz - so wie du
> auch angesetzt hast, an:
>  
> [mm]\sqrt{x^2+1}=\left(x^2+1\right)^{\frac{1}{2}}[/mm] ...
>  

[mm] $g'=\bruch{1}{2}(x^{2}+1)^{\bruch{1}{2}}*2x$ [/mm]

Dann:
[mm] $\left[ e^{g(x)} \right]'=e^{\wurzel{x^{2}+1}}*\bruch{1}{2}(x^{2}+1)^{\bruch{1}{2}}*2x$ [/mm]

Ich habe das Gefühl, dass ich auf dem Holzweg bin...?

Bezug
                                        
Bezug
Ableitungen von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 So 28.03.2010
Autor: schachuzipus

Hallo nochmal,

> Danke, schachuzipus.
>  Das Problem war, dass ich mich nur auf den Exponenten
> beschränkt und die Kettenregel nicht richtig verwendet
> habe.
>  
> Ich habe versucht weiterzukommen, stoße aber ziemlich bald
> schon an meine Grenzen.
>  
> > Es ist [mm]\left[e^{g(x)}\right]'=e^{g(x)}\cdot{}g'(x)[/mm]
>  >  
> > Den Wurzelausdruck musst du seinerseits ebenfalls mit der
> > Kettenregel erschlagen.
>  >  
> > Dazu bietet sich die Umformung in eine Potenz - so wie du
> > auch angesetzt hast, an:
>  >  
> > [mm]\sqrt{x^2+1}=\left(x^2+1\right)^{\frac{1}{2}}[/mm] ...
>  >  
>
> [mm]g'=\bruch{1}{2}(x^{2}+1)^{\bruch{1}{2}}*2x[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

[notok]

Nicht ganz, der Exponent vermindert sich doch beim Ableiten um 1, richtig ist also

$g'(x)=\frac{1}{2}(x^2+1)^{\frac{1}{2}-1}\cdot{}2x}=x\cdot{}(x^2+1)^{\red{-}\frac{1}{2}}=\frac{x}{\sqrt{x^2+1}}$

>  
> Dann:
>  [mm]\left[ e^{g(x)} \right]'=e^{\wurzel{x^{2}+1}}*\bruch{1}{2}(x^{2}+1)^{\bruch{1}{2}}*2x[/mm]
>  
> Ich habe das Gefühl, dass ich auf dem Holzweg bin...?

Der Ansicht bin ich ganz und gar nicht, du bist doch nahe dran, hast nur eine "Kleinigkeit" übersehen, die dann zu einem falschen Ergebnis führt ...



Gruß

schachuzipus


Bezug
                                                
Bezug
Ableitungen von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 So 28.03.2010
Autor: el_grecco

Danke, schachuzipus.

> Nicht ganz, der Exponent vermindert sich doch beim Ableiten
> um 1, richtig ist also
>  
> [mm]g'(x)=\frac{1}{2}(x^2+1)^{\frac{1}{2}-1}\cdot{}2x}=x\cdot{} > (x^2+1)^{\red{-}\frac{1}{2}}=\frac{x}{\sqrt{x^2+1}}[/mm]
>

Müsste es am Ende nicht [mm] $\frac{x}{\wurzel[2]{x^{2}+1}}$ [/mm] heißen?

Dann:

$ [mm] \left[ e^{g(x)} \right]'=e^{\wurzel{x^{2}+1}}\cdot{}\frac{x}{\wurzel[2]{x^{2}+1}} [/mm] $

Ich sehe jetzt aber absolut nicht, wie ich auf den Weg der Musterlösung kommen kann. [keineahnung]

Bezug
                                                        
Bezug
Ableitungen von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 So 28.03.2010
Autor: schachuzipus

Hallo nochmal,

> Danke, schachuzipus.
>  
> > Nicht ganz, der Exponent vermindert sich doch beim Ableiten
> > um 1, richtig ist also
>  >  
> > [mm]g'(x)=\frac{1}{2}(x^2+1)^{\frac{1}{2}-1}\cdot{}2x}=x\cdot{} > (x^2+1)^{\red{-}\frac{1}{2}}=\frac{x}{\sqrt{x^2+1}}[/mm]
>  
> >
>
> Müsste es am Ende nicht [mm]\frac{x}{\wurzel[2]{x^{2}+1}}[/mm]
> heißen?

Es ist [mm] $\sqrt{\ldots}$ [/mm] dasselbe wie [mm] $\sqrt[2]{\ldots}$ [/mm]

>  
> Dann:
>  
> [mm]\left[ e^{g(x)} \right]'=e^{\wurzel{x^{2}+1}}\cdot{}\frac{x}{\wurzel[2]{x^{2}+1}}[/mm]
>  
> Ich sehe jetzt aber absolut nicht, wie ich auf den Weg der
> Musterlösung kommen kann. [keineahnung]

Naja, wir haben ja auch noch nicht den gesamten Exponenten verarztet, nur den "hinteren" Teil [mm] $\sqrt{x^2+1}$ [/mm]

Im Exponenten steht aber [mm] $\ln(a)\cdot{}\sqrt{x^2+1}$ [/mm]

[mm] $\ln(a)$ [/mm] ist einfach eine multiplikative Konstante, unabh. von x, die bleibt beim Ableiten einfach erhalten.

Bsp.: [mm] $\left[3\cdot{}x^2\right]'=3\cdot{}2x$ [/mm]

Denke dir, statt [mm] $\ln(a)$ [/mm] stünde dort eine 3.

Was ergibt sich also ...


Gruß

schachuzipus


Bezug
                                                                
Bezug
Ableitungen von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 So 28.03.2010
Autor: el_grecco

Für eine bessere Übersicht:

$ [mm] a^{\sqrt{x^2+1}}=e^{\sqrt{x^2+1}\cdot{}\ln(a)} [/mm] $

Abgeleitet mit der Kettenregel:

$ [mm] \left[e^{g(x)}\right]'=e^{g(x)}\cdot{}g'(x) [/mm] $


>  
> [mm]\ln(a)[/mm] ist einfach eine multiplikative Konstante, unabh.
> von x, die bleibt beim Ableiten einfach erhalten.
>  
> Bsp.: [mm]\left[3\cdot{}x^2\right]'=3\cdot{}2x[/mm]
>  
> Denke dir, statt [mm]\ln(a)[/mm] stünde dort eine 3.
>  
> Was ergibt sich also ...
>  

Muss das dann so heißen?

[mm] $\left[e^{g(x)}\right]'=e^{\sqrt{x^2+1}\cdot{}\ln(a)}\cdot{}\frac{x}{a\sqrt{x^2+1}}$ [/mm] (da: [mm] $f(x)=\ln [/mm] a ; [mm] f'(x)=\bruch{1}{a}$) [/mm]

Bezug
                                                                        
Bezug
Ableitungen von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 So 28.03.2010
Autor: schachuzipus

Hallo nochmal,

> Für eine bessere Übersicht:
>  
> [mm]a^{\sqrt{x^2+1}}=e^{\sqrt{x^2+1}\cdot{}\ln(a)}[/mm]
>  
> Abgeleitet mit der Kettenregel:
>  
> [mm]\left[e^{g(x)}\right]'=e^{g(x)}\cdot{}g'(x)[/mm]
>  
>
> >  

> > [mm]\ln(a)[/mm] ist einfach eine multiplikative Konstante, unabh.
> > von x, die bleibt beim Ableiten einfach erhalten.
>  >  
> > Bsp.: [mm]\left[3\cdot{}x^2\right]'=3\cdot{}2x[/mm]
>  >  
> > Denke dir, statt [mm]\ln(a)[/mm] stünde dort eine 3.
>  >  
> > Was ergibt sich also ...
>  >  
>
> Muss das dann so heißen?
>  
> [mm]\left[e^{g(x)}\right]'=e^{\sqrt{x^2+1}\cdot{}\ln(a)}\cdot{}\frac{x}{a\sqrt{x^2+1}}[/mm]
> (da: [mm]f(x)=\ln a ; f'(x)=\bruch{1}{a}[/mm])

Unsinn, was habe ich denn oben geschrieben?

[mm] $\ln(a)$ [/mm] ist doch von x völlig unabhängig, das ist einfach ne reelle Zahl

Setze mit der o.e. Kettenregel und Bezeichnung:

[mm] $g(x):=\ln(a)\cdot{}\sqrt{x^2+1}$ [/mm]

Vllt. überlegst du mal vorher, wie die Ableitung von [mm] $245\cdot{}\sqrt{x^2+1}$ [/mm] aussieht und die von [mm] $13\cdot{}\sqrt{x^2+1}$ [/mm] und die von [mm] $\pi\cdot{}\sqrt{x^2+1}$ [/mm] ...

Gruß

schachuzipus


Bezug
                                                                                
Bezug
Ableitungen von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 So 28.03.2010
Autor: el_grecco

Sorry, ich bin immer zu sehr auf die Formelsammlung fixiert.


Dann ist das hier der "aktuelle Stand":
[mm] $\left[e^{g(x)}\right]'=e^{\sqrt{x^2+1}\cdot{}\ln(a)}\cdot{}\frac{x}{\sqrt{x^2+1}}*\ln(a)$ [/mm]

Wie geht es nun aber weiter (vorausgesetzt das ist richtig)?

Bezug
                                                                                        
Bezug
Ableitungen von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 So 28.03.2010
Autor: schachuzipus

Hallo nochmal,

> Sorry, ich bin immer zu sehr auf die Formelsammlung
> fixiert.
>  
>
> Dann ist das hier der "aktuelle Stand":
>  
> [mm]\left[e^{g(x)}\right]'=e^{\sqrt{x^2+1}\cdot{}\ln(a)}\cdot{}\frac{x}{\sqrt{x^2+1}}*\ln(a)[/mm] [ok]

Aha, HEUREKA!

;-)

>  
> Wie geht es nun aber weiter (vorausgesetzt das ist
> richtig)?

Das ist es, du kannst [mm] $e^{\text{bla}}$ [/mm] wieder umschreiben in [mm] $a^{\sqrt{x^2+1}}$, [/mm] dann sieht's wie in der ML aus ...

Gruß

schachuzipus


Bezug
                                                                                                
Bezug
Ableitungen von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:16 So 28.03.2010
Autor: el_grecco

Wow!
Echt 1000*THANKS, schachuzipus! [anbet] [anbet]

Jetzt habe ich es wirklich begriffen. Ich muss aber ehrlich sagen, dass ich Deinen Weg inklusive Erklärungen um einiges besser finde, als den Weg der Musterlösung und die "Erklärungen" dort. Hätten die das genauso geschrieben wie Du hier, dann wäre die Aufgabe von Anfang an kein Problem gewesen.

Nochmals vielen Dank, dass Du dir die Zeit genommen hast, mit mir die Aufgabe hier durchzurechnen.

Gruß
el_grecco

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]