www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitungen - Stammfunktion
Ableitungen - Stammfunktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen - Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:10 Sa 22.09.2007
Autor: lm007

Aufgabe
[mm] \bruch{x²+2x}{x^{4}} [/mm]      
[mm] \bruch{x³+1}{2x²} [/mm]
[mm] \bruch{1+x+x³}{3x³} [/mm]
[mm] \bruch{(2x+1)²-1}{x} [/mm]

Hallo, wir sollen für die Ableitungen die Stammform finden. Bisher kam ich auch ganz gut mit, doch mit diesen Brüchen komme ich irgendwie nicht mehr klar... Ich habe immer als ersten Schritt die Brüche geteilt, also z.B. beim ersten: [mm] \bruch{x²+2x}{x^{4}} [/mm]  -->  [mm] \bruch{x²} \* \bruch{2x}{x^{4}} [/mm]  .
So nun habe ich die zwei Brüche, weiß aber nicht wie ich jetzt weiter rechen muss...
Kommt da jetzt [mm] \bruch{2x}{x^{4}} [/mm]  raus???
Kann mir da jemand helfen?

        
Bezug
Ableitungen - Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:36 Sa 22.09.2007
Autor: Martinius

Hallo Im007,

ich nehme an, es geht um die Ableitungen der Funktionen. Du hast doch bestimmt schon mal etwas von der Quotientenregel gehört?

Wenn f(x) = [mm] \bruch{u(x)}{v(x)} [/mm]

dann ist f'(x) = [mm] \bruch{u'(x)*v(x) - u(x)*v'(x)}{v(x)^{2}} [/mm]

Angewendet auf dein erstes Beispiel:

f(x) = [mm] \bruch{x^{2}+2x}{x^4} [/mm]


f'(x) = [mm] \bruch{(2x+2)*x^4-(x^{2}+2x)*4x^{3}}{x^8} [/mm] = [mm] \bruch{2x^2+2x-4x^{2}-8x}{x^5} [/mm] = [mm] \bruch{-2x^2-6x}{x^5} [/mm]

So, nun rechne Du mal.

LG, Martinius

Bezug
        
Bezug
Ableitungen - Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:47 Sa 22.09.2007
Autor: barsch

Hi,

verstehe ich das richtig?

f'(x)=[mm]\bruch{x²+2x}{x^{4}}[/mm]    

und du sollst f(x) - die Stammfunktion - finden?

Deine Idee war schon ganz gut:

[mm] f'(x)=\bruch{x²+2x}{x^{4}}=\bruch{x^2}{x^4}+\bruch{2x}{x^4}=\bruch{1}{x^2}+\bruch{2}{x^3}=x^{-2}+2x^{-3} [/mm]

[mm] f(x)=-x^{-1}-x^{-2}=\bruch{-1}{x}-\bruch{1}{x^2}=-\bruch{x+1}{x^2}. [/mm]

Ich hoffe, ich habe deine Aufgabenstellung richtig verstanden und konnte dir für deine weiteren Funktionen helfen.

MfG barsch



Bezug
                
Bezug
Ableitungen - Stammfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Sa 22.09.2007
Autor: lm007

Okay, aber wie kommt man auf
f'(x)= [mm] \bruch{1}{x²} [/mm] + [mm] \bruch{2}{x³} [/mm]
und
f(x)= [mm] x^{-1} [/mm] - [mm] x^{-2} [/mm] = [mm] -x\bruch{-1}{x} [/mm] - [mm] \bruch{1}{x²} [/mm] = - [mm] \bruch{x+1}{x²} [/mm]

Ich verstehe die Schritte nicht so ganz, wie man das so rechnet...


Bezug
                        
Bezug
Ableitungen - Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 Sa 22.09.2007
Autor: Karl_Pech

Hallo lm007,


> Okay, aber wie kommt man auf
> f'(x)= [mm]\bruch{1}{x²}[/mm] + [mm]\bruch{2}{x³}[/mm]
>  und
> f(x)= [mm]x^{-1}[/mm] - [mm]x^{-2}[/mm] = [mm]-x\bruch{-1}{x}[/mm] - [mm]\bruch{1}{x²}[/mm] = -
> [mm]\bruch{x+1}{x²}[/mm]
>  
> Ich verstehe die Schritte nicht so ganz, wie man das so
> rechnet...


Wie würdest du die Funktion [mm]f_r(x) := \tfrac{x^{r+1}}{r+1}[/mm] ableiten? Wenn du dir diese Frage beantwortet hast, setze einfach [mm]r = -2\![/mm] und dann [mm]r = -3\![/mm] und du erhälst sofort deine Stammfunktion.



Viele Grüße
Karl




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]