www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Ableitungen
Ableitungen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Verkettete Funktionen/Kettenr.
Status: (Frage) beantwortet Status 
Datum: 20:53 Mi 19.10.2005
Autor: barney_gumbel2003

Hi erst mal...
Ich hab zwar schon mal das selbe thema hier gesehen doch es hat nicht wirklich geholfen deshalb frage ich ob mir jemand schritt für schritt aufschreiben kann wie man von der Funktion (die ich gleich liefere ) eine Ableitung bildet vielen dank im vorraus barney.
Ich weis zwar das man da etwas mit innere und aüßere funktion machen muss aber ich komm nicht drauf wie das geht

Hier die Funktion

f(x)= [mm] \wurzel{4-x²} [/mm]




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitungen: Erklärung
Status: (Antwort) fertig Status 
Datum: 21:28 Mi 19.10.2005
Autor: MathePower

Hallo barney_gumbel2003,

[willkommenmr]

> Hi erst mal...
>  Ich hab zwar schon mal das selbe thema hier gesehen doch
> es hat nicht wirklich geholfen deshalb frage ich ob mir
> jemand schritt für schritt aufschreiben kann wie man von
> der Funktion (die ich gleich liefere ) eine Ableitung
> bildet vielen dank im vorraus barney.
>  Ich weis zwar das man da etwas mit innere und aüßere
> funktion machen muss aber ich komm nicht drauf wie das
> geht
>  
> Hier die Funktion
>  
> f(x)= [mm]\wurzel{4-x²}[/mm]

Als  Verkettung von Funktionen schreibt sich das so:

[mm]f(x)\;=\;h(\;u(x)\;)\;=\wurzel{4\;-\;x^{2}}[/mm]

Nun definieren wir

[mm]h(u)\;=\;\wurzel{u}[/mm]

und

[mm]u(x)\;=\;4\;-\;x^{2}[/mm]

Es ist dann

[mm]h'(u)\;=\frac{1}{2\;\wurzel{u}}[/mm]

[mm]u'(x)\;=\;-2\;x[/mm]

Die Ableitung ergibt sich dann zu

[mm] \begin{gathered} f'(x)\;=\;h'(u(x))\;u'(x) \hfill \\ =\frac{-2\;x}{2\;\wurzel{u(x)}} \hfill \\ =\;\frac{-2\;x}{2\;\wurzel{4\;-\;x^{2}}} \hfill \\ =\;\frac{-x}{\wurzel{4\;-\;x^{2}}} \hfill \\ \end{gathered} [/mm]

Gruß
MathePower

Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:43 Mi 19.10.2005
Autor: barney_gumbel2003

Hi nochmal  wie ist denn dann die ableitung der funktion die gleich kommt das e steht für die eulersche zahl hier ist die funktion

[mm] f(t)=30*e^{-0,0462t}+5 [/mm]

ich hab dies als Ableitung im gedanke nur ich bin mir nicht sicher weil man ja die eulerschezahl bei der ableitung gleich bleibt

[mm] f'(t)=e^{-0,0462t}*-0,0462 [/mm]

nochmals vielen danke für eure hilfe

Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Mi 19.10.2005
Autor: Bastiane

Hallo!

> Hi nochmal  wie ist denn dann die ableitung der funktion
> die gleich kommt das e steht für die eulersche zahl hier
> ist die funktion
>  
> [mm]f(t)=30*e^{-0,0462t}+5[/mm]
>  
> ich hab dies als Ableitung im gedanke nur ich bin mir nicht
> sicher weil man ja die eulerschezahl bei der ableitung
> gleich bleibt
>  
> [mm]f'(t)=e^{-0,0462t}*-0,0462[/mm]
>  
> nochmals vielen danke für eure hilfe

Fast - du hast nur die 30 vergessen. Das ist ja eine multiplikative Konstante - so wie z. B. bei [mm] 5x^2, [/mm] da rechnest du für die Ableitung ja auch [mm] \red{5}*2x [/mm] - die 5 bleibt also stehen. Du hättest hier dann also als Ableitung:

[mm] f'(t)=30*(-0,0462)*e^{-0,0462t} [/mm]

Alles klar?

Viele Grüße
Bastiane
[cap]


Bezug
                                
Bezug
Ableitungen: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:15 Mi 19.10.2005
Autor: barney_gumbel2003

Hi jo ist ja klar bin echt dankbar bis vor einigen stunden stand ich wirklich aufn Schlauch vielen dank ich wünsche dir/euch einen guten abend und eine gute nacht und nochmals vielen dank bye barney

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]