www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Ableitungen
Ableitungen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:59 Fr 14.10.2005
Autor: nobody83

Hey, brauch hilfe bei folgenden Ableitungen (nur die erste Ableitung) :

[mm]f(x) = \wurzel{2x-5x^4}[/mm]

[mm]f(x) = \bruch{x+3}{x^2+1}[/mm]

danke euch!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Fr 14.10.2005
Autor: taura

Hallo und [willkommenmr]

> [mm]f(x) = \wurzel{2x-5x^4}[/mm]
>  
> [mm]f(x) = \bruch{x+3}{x^2+1}[/mm]

Für die erste Funktion braucht man die Kettenregel, für die zweite die Qoutientenregel.
Schau dir diese beiden Links bitte mal an, und versuchs damit. Wenn du möchtest kannst du gern deine Ergebnisse hier reinstellen, dann kann sie jemand kontrollieren.

Gruß taura

Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 Fr 14.10.2005
Autor: nobody83

ok, also meine lösung sieht so aus:

zu nr 1) f'(x) = [mm] [\bruch{1}{2}*(2x-5x^4)^\bruch{-1}{2}] * (2+20x^3) [/mm]

zu nr 2) f'(x) = [mm] \bruch{x^2+1-(2x^2+6x)}{(x^2+1)^2} [/mm]

...danke für die fehlersuche ;)

Bezug
                        
Bezug
Ableitungen: Überprüfung
Status: (Antwort) fertig Status 
Datum: 14:29 Fr 14.10.2005
Autor: clwoe

Hallo,

die zweite Ableitung stimmt, aber die erste nicht ganz. In der ersten hast du einen Vorzeichenfehler drin. Weiss nicht genau wie er entstanden ist, aber es ist das "+" in der letzten Klammer falsch, da gehört ein "-" hinein. Also anstatt so: $ [mm] [\bruch{1}{2}\cdot{}(2x-5x^4)^\bruch{-1}{2}] \cdot{} (2+20x^3) [/mm] $ muss es so heißen: $ [mm] [\bruch{1}{2}\cdot{}(2x-5x^4)^\bruch{-1}{2}] \cdot{} (2-20x^3) [/mm] $

Dann ist es richtig. Du kannst ja nochmal durchgehen und schauen wo der Fehler entstanden ist.

Gruß,
clwoe


Bezug
                                
Bezug
Ableitungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:38 Fr 14.10.2005
Autor: nobody83

ah ok ;) war nur leichtsinnsfehler beim ableiten! danke dir! echt supi forum

Bezug
                        
Bezug
Ableitungen: Und vereinfachen!
Status: (Antwort) fertig Status 
Datum: 17:51 Fr 14.10.2005
Autor: Zwerglein

Hi, nobody,

> zu nr 1) f'(x) = [mm][\bruch{1}{2}*(2x-5x^4)^\bruch{-1}{2}] * (2+20x^3)[/mm]
>  
> zu nr 2) f'(x) = [mm]\bruch{x^2+1-(2x^2+6x)}{(x^2+1)^2}[/mm]
>  

Zusätzlich zu clwoes Antwort noch der Hinweis: Alle Ableitungen vereinfachen:

Nr.1: f'(x) = [mm] \bruch{1-10x^{3}}{\wurzel{2x-5x^{4}}} [/mm] (gekürzt durch 2)

Nr.2: f'(x) = [mm] \bruch{-x^{2}-6x+1}{(x^2+1)^2} [/mm]


mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]