www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitungen
Ableitungen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Mi 24.10.2007
Autor: espritgirl

Hallo Zusammen [winken],

Ich habe ein paar Aufgaben, deren erste und zweite Ableitung ich bilen soll, ich jedoch nicht weiß, wie.

1) [mm] (x-1)^{2} [/mm]
---> ist ja eine binomische Formel und man könnte ja auch schreiben (x-1)*(x-1), wenn ich dies ableite, da kommt aber wieder das gleiche raus. Stimmt das Vorgehen?

2) [mm] (8x^{2}-5x+7)*(4x^{7}-3x^{4}+2x) [/mm]
-> hier bilde ich mit der Prduktregel die erste Aböleitung, dann hat man da ja u`*v+u*v` stehen, kann man davon dann direkt die 2. Ableitung bilden, indem man doppelt die Produktregel anwendet? Also
[mm] u`_{1}*v_{1}+u_{1}*v`_{1}+u`_{2}*v_{2}+u_{2}*v`_{2} [/mm]
Wir müssen die Ableitungen bilden, ohne vorher auszumultiplizieren.

LG

Sarah

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Mi 24.10.2007
Autor: Somebody


> Hallo Zusammen [winken],
>  
> Ich habe ein paar Aufgaben, deren erste und zweite
> Ableitung ich bilen soll, ich jedoch nicht weiß, wie.
>  
> 1) [mm](x-1)^{2}[/mm]
>  ---> ist ja eine binomische Formel und man könnte ja auch

> schreiben (x-1)*(x-1), wenn ich dies ableite, da kommt aber
> wieder das gleiche raus. Stimmt das Vorgehen?

Das Vorgehen (Berechnen der Ableitung von [mm] $(x-1)^2$, [/mm] indem man die Produktregel auf [mm] $(x-1)\cdot [/mm] (x-1)$ anwendet) stimmt schon: nur solltest Du nicht dasselbe erhalten:
[mm]\big((x-1)\cdot (x-1)\big)'=1\cdot (x-1)+(x-1)\cdot 1 = 2x-2=2(x-1)[/mm]
Ist also nicht dasselbe (wie [mm] $(x-1)^2$). [/mm]

>  
> 2) [mm](8x^{2}-5x+7)*(4x^{7}-3x^{4}+2x)[/mm]
>  -> hier bilde ich mit der Prduktregel die erste

> Aböleitung, dann hat man da ja u'*v+u*v' stehen, kann man
> davon dann direkt die 2. Ableitung bilden, indem man
> doppelt die Produktregel anwendet? Also
>  [mm]u'_{1}*v_{1}+u_{1}*v'_{1}+u'_{2}*v_{2}+u_{2}*v'_{2}[/mm]

Ich verstehe leider nicht, welche Bedeutung aus Deiner Sicht diesen Indizes 1 bzw. 2 zukommt.

>  Wir müssen die Ableitungen bilden, ohne vorher
> auszumultiplizieren.

Ja, wenn ihr dies machen müsst, dann wirst Du die Produktregel zur Berechung der zweiten Ableitung also auf die beiden Teilprodukte [mm] $u'\cdot [/mm] v$ und [mm] $u\cdot [/mm] v'$ der ersten Ableitung nochmals anwenden müssen. Dies ergibt aber:
[mm](u\cdot v)''=(\blue{u'\cdot v}+\green{u\cdot v'})'=\blue{u''v+u'v'}+\green{u'v'+uv''}=u''v+2u'v'+uv''[/mm]
Sieht beinahe ein wenig "binomisch" aus, findest Du nicht auch?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]