www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitungen
Ableitungen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 Di 10.07.2007
Autor: dbzworld

Aufgabe
Bestimme die Extrema:
[mm] f(x)=\bruch{x^2-4}{(x-1)^2} [/mm]        

1.Ableitung soll sein:
[mm] f´(x)=2\bruch{-x+4}{(x-1)^3} [/mm]  
und 2.Ableitung soll sein:
[mm] f´´(x)=2\bruch{2x-11}{(x-1)^4} [/mm]
    

Hallo beim lernen für die Klausur bin ich darauf gestoßen aber ich komme leider nicht drauf, wie es unsere Übungsgruppenleiterin es gelöst hat, weil ich habe auf dem Zettel auch keine Zwischenschritte...
ich wäre euch dankbar wenn mir einer die Zwischenschritte erklären könnte.

danke

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 Di 10.07.2007
Autor: leduart

Hallo
du musst einfach nach der Quotientenregel ableiten!
[mm] f(x)=\bruch{u(x)}{v(x)} [/mm]
[mm] f'(x)=\bruch{u'v-uv'}{v^2} [/mm]
und dann stur rechnen!
Gruss leduart

Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Fr 13.07.2007
Autor: dbzworld

Aufgabe
[mm] f(x)=\bruch{x^2-4}{(x-1)^2} [/mm]
[mm] u(x)=x^2-4 [/mm]
u´(x)=2x
[mm] v(x)=(x-1)^2 [/mm]
v´(x)=2(x-1)*1

[mm] f´(x)=\bruch{2x(x-1)^2-x^2-4*2(x-1)}{(x-1)^4} [/mm]

       [mm] =\bruch{(x-1)(2x(x-1)-x^2-8)}{(x-1)^4} [/mm]
       [mm] =\bruch{2x^2-2-x^2-8}{(x-1)^3} [/mm]
       [mm] =\bruch{x^2-10}{(x-1)^3} [/mm]  

Hallo, vielen dank erstmal und sry das ich so spät antworte, hatte leider ein wenig Klausurstress naja...habs mal nachgerechnet, aber komme leider nicht auf dasselbe heraus, wurde ein "Trick"oder sowas angewendet? oder ist bei mir ein Fehler drinne?

Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Fr 13.07.2007
Autor: Stefan-auchLotti


> [mm] $f(x)=\bruch{x^2-4}{\left(x-1\right)^2}$ [/mm]
> [mm] $u(x)=x^2-4$ [/mm]
> $u'(x)=2x$
> [mm] $v(x)=\left(x-1\right)^2$ [/mm]
> [mm] $v'(x)=2\left(x-1\right)*1$ [/mm]
>

Jetzt hast du schlicht und einfach ein Paar Klammern vergessern und den konstanten Faktor 2:

> [mm] $f'(x)=\bruch{2x\left(x-1\right)^2-\red{\left(}x^2-4\red{\right)}*\red{2}\left(x-1\right)}{(x-1)^4}$ [/mm]
>  
> [mm] $=\bruch{\left(x-1\right)(2x\left(x-1\right)-x^2-8)}{\left(x-1\right)^4}$ [/mm]
> [mm] $=\bruch{2x^2-2-x^2-8}{(x-1)^3}$ [/mm]
> [mm] $=\bruch{x^2-10}{(x-1)^3}$ [/mm]
>
> Hallo, vielen dank erstmal und sry das ich so spät
> antworte, hatte leider ein wenig Klausurstress naja...habs
> mal nachgerechnet, aber komme leider nicht auf dasselbe
> heraus, wurde ein "Trick"oder sowas angewendet? oder ist
> bei mir ein Fehler drinne?  

Denke, dass du jetzt alleine weiterkommst.

Grüße, Stefan.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]