www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitungen
Ableitungen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:37 Fr 03.03.2006
Autor: sonnenblumale

Aufgabe
Berechnen Sie folgende Ableitungen:

1) f(x) = [mm] a^x [/mm]
2) h(y) = [mm] y^{ \ln(y)}*e^{ \sqrt[4]( \tan (\cos y))} [/mm]

Hi!

ad 1) Wie kommt man denn rechnerisch auf f'(x) = [mm] a^x*logx? [/mm] Ich brauch eine schöne Herleitung, sodass der log auftaucht.
Mir ist ja auch klar, dass sich für die exp der ln dann praktisch weghebt.
Bin das Ganze vorher implizit angegangen, und da funktionierts prächtig, nur dass ich dafür die Ableitungsformel für den log verwendet habe, und mir dessen Herleitung auch nicht klar ist. Das läuft ja im Kreis so. Ich brauch als Info eine der beiden Herleitungen, der Rest ergibt sich dann eh durch die Umkehrfunktion.

ad 2) hier die Lösung lt. Lösungsblatt:
h'(x) = [mm] e^{ \ln^2y} [/mm] * 2 [mm] \ln(y) [/mm] * [mm] \bruch{1}{y} [/mm] * [mm] e^{ \sqrt[4]( \tan (\cos y))} [/mm] +
[mm] e^{ \ln^2y} [/mm] * [mm] e^{ \sqrt[4]( \tan (\cos y))} [/mm] * [mm] \bruch{1}{ \sqrt[4]( \tan ( \cos(y)))^3} [/mm] * [mm] \bruch{1}{y} [/mm] * [mm] \bruch{1}{ \cos^2 ( \cos(y))} [/mm] * (- [mm] \sin(y)) [/mm]

meine Verwunderung bezieht sich hier auf das [mm] e^{ \ln^2y} [/mm] ... wo kommt das her? (wo kommt überhaupt e her??)

thx & greetz
sonnenblumale


        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:53 Sa 04.03.2006
Autor: felixf


> Berechnen Sie folgende Ableitungen:
>  
> 1) f(x) = [mm]a^x[/mm]
>  2) h(y) = [mm]y^{ \ln(y)}*e^{ \sqrt[4]( \tan (\cos y))}[/mm]
>  
> Hi!
>  
> ad 1) Wie kommt man denn rechnerisch auf f'(x) = [mm]a^x*logx?[/mm]
> Ich brauch eine schöne Herleitung, sodass der log
> auftaucht.

Also [mm] $\log [/mm] = [mm] \ln$ [/mm] bei dir? :-)

Nun, nimm [mm] $a^x [/mm] = [mm] \exp(\log a^x) [/mm] = [mm] \exp(x \log [/mm] a)$ und wende die Kettenregel an.

> Mir ist ja auch klar, dass sich für die exp der ln dann
> praktisch weghebt.
>  Bin das Ganze vorher implizit angegangen, und da
> funktionierts prächtig, nur dass ich dafür die
> Ableitungsformel für den log verwendet habe, und mir dessen
> Herleitung auch nicht klar ist. Das läuft ja im Kreis so.
> Ich brauch als Info eine der beiden Herleitungen, der Rest
> ergibt sich dann eh durch die Umkehrfunktion.

Was genau brauchst du fuer Herleitungen? Das [mm] $\log'x [/mm] = 1/x$ ist, und das ...? Das [mm] $\log'x [/mm] = 1/x$ ist folgt mit der Regel fuer Umkehrfunktionen aus [mm] $\exp'(x) [/mm] = [mm] \exp(x)$, [/mm] willst du davon eine Herleitung?

> ad 2) hier die Lösung lt. Lösungsblatt:
>  h'(x) = [mm]e^{ \ln^2y}[/mm] * 2 [mm]\ln(y)[/mm] * [mm]\bruch{1}{y}[/mm] * [mm]e^{ \sqrt[4]( \tan (\cos y))}[/mm]
> +
> [mm]e^{ \ln^2y}[/mm] * [mm]e^{ \sqrt[4]( \tan (\cos y))}[/mm] * [mm]\bruch{1}{ \sqrt[4]( \tan ( \cos(y)))^3}[/mm]
> * [mm]\bruch{1}{y}[/mm] * [mm]\bruch{1}{ \cos^2 ( \cos(y))}[/mm] * (-
> [mm]\sin(y))[/mm]
>  
> meine Verwunderung bezieht sich hier auf das [mm]e^{ \ln^2y}[/mm]
> ... wo kommt das her? (wo kommt überhaupt e her??)

Nun: [mm] $y^{\ln y} [/mm] = [mm] \exp(\ln y^{\ln y}) [/mm] = [mm] \exp(\ln [/mm] y [mm] \cdot \ln [/mm] y) = [mm] \exp(\ln^2 [/mm] y)$. Und per Definition ist ja [mm] $\exp(x) [/mm] = [mm] e^x$. [/mm]

Beantwortet das deine Fragen?

LG Felix



Bezug
                
Bezug
Ableitungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:47 So 05.03.2006
Autor: sonnenblumale

Hi Felix!

Danke, Frage perfekt beantwortet!

lg
sonnenblumale

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]