www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung von sinh^-1
Ableitung von sinh^-1 < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von sinh^-1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 So 18.01.2015
Autor: mathenoob3000

Aufgabe
sinh : [mm] \mathbb [/mm] R [mm] \rightarrow \mathbb [/mm] R
Zeigen sie: sinh ist bijektv und besitzt eine diffbare Umkehrabbildung


Hi
kurze Frage:
Reicht es dass ich eine Abbildung [mm] $sinh^{-1}$ [/mm] finden kann, sodass:
$ sinh(x) [mm] \circ sinh^{-1}(x) [/mm] = [mm] sinh(x)^{-1} \circ [/mm] sinh(x) = x $ um die Bijktivität zu zeigen?
Ich meine mich daran zu erinnern dass wir das am Anfang vom Semester mal gesagt haben, finde es leider aber gerade nicht.
Oder muss ich Injektivität und Surjektivität einzeln zeigen?


lg

        
Bezug
Ableitung von sinh^-1: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 So 18.01.2015
Autor: YuSul

Die surjektivität und injektivität einzeln zu prüfen ist wohl einfacher als eine Umkehrabbildung anzugeben. Das ist mehr rechenarbeit.
Da du die aber eh brauchst kannst du es natürlich auch direkt über die Umkehrabbildung machen.

Es ist [mm] $sinh:=\frac12(e^x-e^{-x})$ [/mm]

Du musst nun [mm] $x=\frac12(e^y-e^{-y})$ [/mm] nach y auflösen. Dann hast du deine Umkehrabbildung gefunden.


Bezug
        
Bezug
Ableitung von sinh^-1: Antwort
Status: (Antwort) fertig Status 
Datum: 07:01 Mo 19.01.2015
Autor: fred97

Zeige die Bijektivität von [mm] f:=\sinh [/mm] zu Fuß.

Die Angabe der Umkehrfunktion ist nicht verlangt !

Dass die Umkehrfunktion von [mm] f:=\sinh [/mm] differenzierbar ist, folgt aus dem Satz über die Differenzierbarkeit der Umkehrfunktion.

Dazu ist zu prüfen, ob $f'(x) [mm] \ne [/mm] 0$ ist für alle x.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]