www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitung v.Funktion mit Exp.x
Ableitung v.Funktion mit Exp.x < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung v.Funktion mit Exp.x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 Di 18.12.2007
Autor: mai

Hallo Ihr Lieben,

wenn man [mm] (log(x))^{2*x} [/mm] ableitet,
erhält man [mm] 2*(log(x))^{2*x}*(log(log(x))+\bruch{1}{log(x)}) [/mm] :
wie kommt man an [mm] \bruch{1}{log(x)}? [/mm]

Vielen Dank!

        
Bezug
Ableitung v.Funktion mit Exp.x: innere Ableitung
Status: (Antwort) fertig Status 
Datum: 15:53 Di 18.12.2007
Autor: Roadrunner

Hallo mai!


Dieser Term entsteht durch die innere Ableitung des Exponenten in Verbindung mit der Produktregel des Termes [mm] $2x*\ln\left[\ln(x)\right]$ [/mm] :
[mm] $$...+2x*\bruch{1}{\ln(x)}*\bruch{1}{x} [/mm] \ = \ ...$$

Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]