www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung und Summe
Ableitung und Summe < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung und Summe: Gleichung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:22 Mo 05.02.2018
Autor: b.reis

Aufgabe
[mm] log(e^{-\delta)^n} +\summe_{i=1}^{n} [/mm] log [mm] (\bruch{\delta^{x^i}}{x^i !}) [/mm]

Bestimme die Ableitung

Hallo,

Meine Ableitung sieht so aus.
ich habe eine Gleichung der Form [mm] n-\delta +\summe_{i=1}^{n} x^i* (1/\delta [/mm] ) [mm] +\delta [/mm]

Ich habe log- log für den Bruch genommen dann die Produktregel und am ende sollte das delta vor der summe verschwinden und die Gleichung nach n aufgelöst werden.
Kann ich das Delta einfach vor die Summe ziehen ?

Danke

Benni

        
Bezug
Ableitung und Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Mo 05.02.2018
Autor: Fulla


> [mm]log(e^{-\delta)^n} +\summe_{i=1}^{n}[/mm] log
> [mm](\bruch{\delta^{x^i}}{x^i !})[/mm]

>

> Bestimme die Ableitung
> Hallo,

>

> Meine Ableitung sieht so aus.
> ich habe eine Gleichung der Form [mm]n-\delta +\summe_{i=1}^{n} x^i* (1/\delta[/mm]
> ) [mm]+\delta[/mm]

>

> Ich habe log- log für den Bruch genommen dann die
> Produktregel und am ende sollte das delta vor der summe
> verschwinden und die Gleichung nach n aufgelöst werden.
> Kann ich das Delta einfach vor die Summe ziehen ?

Hallo Benni,

ich sehe da gleich mehrere Probleme:
- handelt es sich jeweils um den natürlichen Logarithmus?
- heißt es am Anfang [mm]\log((e^{-\delta})^n)[/mm] oder [mm](\log(e^{-\delta})^n[/mm]?
- nach welcher Variablen soll abgeleitet werden?
- die Fakultät im Nenner ist nur für natürliche Zahlen definiert, d.h. es muss [mm] $x\in\mathbb [/mm] N$ gelten und damit ist die Funktion nicht stetig (und auch nicht differenzierbar).

Ist das die originale Aufgabenstellung? Oder ein Zwischenergebnis?

Lieben Gruß,
Fulla

Bezug
                
Bezug
Ableitung und Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:21 Di 06.02.2018
Autor: b.reis

Hallo,

abgeleitet wird nach delta und so weit ich weis ich der log(e) =1

Danke

benni

Bezug
                        
Bezug
Ableitung und Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 07:37 Di 06.02.2018
Autor: fred97


> Hallo,
>  
> abgeleitet wird nach delta und so weit ich weis ich der
> log(e) =1

Dann ist also [mm] \log= \ln [/mm]

Aber nach wie vor ist nicht klar was Du mit [mm] log(e^{-\delta)^n} [/mm] meinst. Kläre das, sonst kann man Dir nicht helfen !


>
> Danke
>  
> benni  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]