www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Ableitung und Nullstellen
Ableitung und Nullstellen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung und Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Mi 30.03.2011
Autor: GreenTreeTea

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
Ich brauche dringende Hilfe bei meinen Hausaufgaben.
Eigentlich hab ich kaum Probleme damit, aber dieses Mal weiß ich echt nicht weiter.
folgendes:
[mm] f(x)=1/3x^4-4x^2+9 [/mm]

Davon soll ich die erste Ableitung machen.
Mein Ergebnis (nach den Regeln, die wir im Unterricht herausgefunden haben):
[mm] f'(x)=4/3x^3-8x [/mm]

Nun mein Problem: Wie kann ich jetzt weiter rechnen ?
Ich soll nun eig. mit "Sinnvollem Erraten" eine Nullstelle herausfinden, mit dieser dann Polynomdivision machen.
Jedoch weiß ich nicht, wie ich auf die Nullstelle komme. Schließlich steht am Ende kein Summand, von dem ich die Teiler, also die möglichen Nullstellen herausfinden kann.

Danke, für alle Hilfe, die ich bekomme!



        
Bezug
Ableitung und Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Mi 30.03.2011
Autor: kushkush

Hallo

Schreibe die Aufgabe hier rein!

Wenn du die Nullstelle der Ableitung willst,
klammere x aus und dann hast du eine Nullstelle.



Gruss
kushkush

Bezug
                
Bezug
Ableitung und Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Mi 30.03.2011
Autor: GreenTreeTea

Aufgabe
1. von [mm] f(x)=1/3x^4-4x^2+9 [/mm] die erste Ableitung f'(x) herausfinden
2. Nullstellen von f'(x) herausfinden
3. Vorzeichenfolge von f'(x) auf einen Zahlenstrahl darstellen
4. die lokalen und absoluten Hoch- und Tiefpunkte errechnen
5. f'(x) zeichnen

Leider hilft mir das nicht weiter.

Die erste Ableitung hab ich ja geschafft: [mm] f'(x)=4/3x^3-8x [/mm]
Wenn ich nun x ausklammere erhalte ich: [mm] f'(x)=x*(4/3x^2-8) [/mm]
Wenn ich jetzt jedoch meine erratenen Zahlen für x einsetze, wie wir das sonst immer gemacht haben, erhalte ich nie 0.
Bisher hatten wir noch nie so eine Aufgabe, bei der durch das Erraten keine Nullstelle herausgefunden werden konnte.

Wie erhalte ich nun die Nullstelle mit der ich weiter arbeiten kann?

Bezug
                        
Bezug
Ableitung und Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Mi 30.03.2011
Autor: kushkush

Hallo


wenn du ausklammerst hast du in der Klammer eine quadratische Gleichung.


Gruss
kushkush

Bezug
                        
Bezug
Ableitung und Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:37 Do 31.03.2011
Autor: fred97


> 1. von [mm]f(x)=1/3x^4-4x^2+9[/mm] die erste Ableitung f'(x)
> herausfinden
>  2. Nullstellen von f'(x) herausfinden
>  3. Vorzeichenfolge von f'(x) auf einen Zahlenstrahl
> darstellen
>  4. die lokalen und absoluten Hoch- und Tiefpunkte
> errechnen
>  5. f'(x) zeichnen
>  Leider hilft mir das nicht weiter.
>  
> Die erste Ableitung hab ich ja geschafft: [mm]f'(x)=4/3x^3-8x[/mm]
>  Wenn ich nun x ausklammere erhalte ich:
> [mm]f'(x)=x*(4/3x^2-8)[/mm]
>  Wenn ich jetzt jedoch meine erratenen Zahlen für x
> einsetze, wie wir das sonst immer gemacht haben, erhalte
> ich nie 0.
> Bisher hatten wir noch nie so eine Aufgabe, bei der durch
> das Erraten keine Nullstelle herausgefunden werden konnte.
>  
> Wie erhalte ich nun die Nullstelle mit der ich weiter
> arbeiten kann?

Siehst Du denn nicht, dass x=0 eine Nullstelle von  $ [mm] f'(x)=x\cdot{}(4/3x^2-8) [/mm] $ ist ??

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]