www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitung spez. Funktion
Ableitung spez. Funktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung spez. Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Mi 05.03.2008
Autor: chirion

Aufgabe
Ermittle die erste Ableitung von:
[mm] y=\bruch{5}{1+e^{-x}}-3 [/mm]

Hallo,

ich komme bei dieser Aufgabe leider nicht weiter.

Ich habe die Funktion umgestellt, so dass ich [mm] y=\bruch{5*e^{x}}{e^{x}+1}-3 [/mm] erhalte.
An dieser Stelle habe ich die Quotientenregel angewandt. [mm] u=5*e^{x} [/mm] und [mm] v=e^{x}+1 [/mm]
So komme ich zu [mm] f'(x)=\bruch{5*e^{x}}{e^{2x}+2*e^{x}+1}. [/mm] Das konstante Glied -3 aus der Angabe habe ich einfach fallengelassen.

Ist das plausibel? Ich habe versucht das mit einem Taschenrechner zu kontrollieren, das klappt aber nicht so richtig.
Vielen Dank!

Chris

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Ableitung spez. Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Mi 05.03.2008
Autor: masa-ru

Hallo chirion,

> [mm]u=5*e^{x}[/mm] und [mm]v=e^{x}+1[/mm]
>  So komme ich zu [mm]f'(x)=\bruch{5*e^{x}}{e^{2x}+2*e^{x}+1}.[/mm]
> Taschenrechner zu kontrollieren, das klappt aber nicht so
> richtig.

nicht ganz.

schreibe den term in potenzschreibweise...

[mm] $y=\bruch{5}{(1+e^{-x}) }-3 [/mm] = 5 * [mm] (1+e^{-x})^{\red{-1}} [/mm] -3$

hier musst du eine kettenregel anwenden:

Äusere funktion: (Potenz)  $5 * [mm] (...)^{\red{-1}}=> [/mm] -5 * [mm] (...)^{\red{-2}}$ [/mm]
Innere : [mm] 1+e^{-x} [/mm] => [mm] -e^{-x} [/mm] ( hier ist es wieder eine kettenregel, so kommt das minus zustande (-x)' = -1)

am schluß Äusere mal innere...

somit  $-5 * [mm] (1+e^{-x})^{\red{-2}}*-e^{-x} [/mm] = [mm] \bruch{5*e^{-x}}{(1+e^{-x})^{\blue{2}}}$ [/mm]


mfg
masa

Bezug
                
Bezug
Ableitung spez. Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 Mi 05.03.2008
Autor: chirion

Vielen Dank!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]