www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitung ln Fkt.
Ableitung ln Fkt. < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung ln Fkt.: Ableitung
Status: (Frage) beantwortet Status 
Datum: 13:33 So 26.11.2006
Autor: zeusiii

Aufgabe
Bilden sie die erste Ableitung  

hallo zusammen

hab heute mal wieder ne kurze Frage :


die Fkt .  

f(x) = ln [mm] (\bruch{t}{x}) [/mm]

f´t = [mm] \bruch{-t}{x^{2}}\bruch{t}{x} [/mm]

<=>  [mm] -\bruch{t}{x} [/mm]

müsste doch eigendlich so richtig sein oder?



freu mich über ne Antwort


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung ln Fkt.: Korrektur
Status: (Antwort) fertig Status 
Datum: 13:43 So 26.11.2006
Autor: Loddar

Hallo zeusiii!


Das stimmt leider nicht!


Zerlege Deinen Term zunächst gemäß MBLogarithmusgesetz: [mm] $\log_b\left(\bruch{m}{n}\right) [/mm] \ = \ [mm] \log(m)-\log(n)$ [/mm] .

Damit sollte sich nun die Ableitung schnell bestimmen lassen.


Anderenfalls musst du hier die MBKettenregel anwenden:

$f'(x) \ = \ [mm] \bruch{1}{\bruch{t}{x}}*\left(\bruch{t}{x}\right)' [/mm] \ = \ [mm] \bruch{x}{t}*\left(-\bruch{t}{x^2}\right) [/mm] \ = \ ...$


Gruß
Loddar


Bezug
        
Bezug
Ableitung ln Fkt.: wie oben
Status: (Frage) beantwortet Status 
Datum: 13:59 So 26.11.2006
Autor: zeusiii

Aufgabe
wie oben  plus eine zweite Aufgabe die ich beim ersten post vergessen hatte .

Hallo

da haben sich Fehler eingeschlichen :


> Bilden sie die erste Ableitung
> hallo zusammen
>
> hab heute mal wieder ne kurze Frage :
>  
>
> die Fkt .  
>
> f(x) = ln [mm](\bruch{t}{x})[/mm]
>  
> f´t = [mm]\bruch{-t}{x^{2}} \bruch{t}{x}[/mm]
>  
> <=>  [mm]-\bruch{t}{x}[/mm]

>  
> müsste doch eigendlich so richtig sein oder?
>  
>
>
> freu mich über ne Antwort
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.



das Ergebnis muss natürlich


f'(x) =  - [mm] \bruch{1}{x} [/mm]

heissen und nicht   t durch t


beim auflösen des Doppelbruchs kürzt sich das t ja weg


f'(x) =  (-t / [mm] x^2 [/mm] ) * (x/ t )

<=> f'(x) =  -1/x


Die zweite Aufgabe ist :


f(t) = ln (t/x)

da müsste es doch so ähnlich sein ,nur das die Variable jetzt oben im Bruch steht


f'(t)  =  [mm] \bruch{t}{t^{2}} [/mm] * [mm] \bruch{t}{x} [/mm]

<=> f´(t) = [mm] \bruch{1}{x} [/mm]



freu mich über ne Antwort






Bezug
                
Bezug
Ableitung ln Fkt.: Korrektur
Status: (Antwort) fertig Status 
Datum: 12:14 Di 28.11.2006
Autor: Loddar

Hallo zeusiii!


> Die zweite Aufgabe ist : f(t) = ln (t/x)
>  
> da müsste es doch so ähnlich sein ,nur das die Variable
> jetzt oben im Bruch steht

[ok] Genau!



> f'(t)  =  [mm]\bruch{t}{t^{2}}[/mm] * [mm]\bruch{t}{x}[/mm]
>
> <=> f´(t) = [mm]\bruch{1}{x}[/mm]

[notok] Zerlege hier doch auch zunächt mittels MBLogarithmusgesetz:

$f(t) \ =\ [mm] \ln\left(\bruch{t}{x}\right) [/mm] \ = \ [mm] \ln(t)-\ln(x)$ [/mm]

[mm] $\Rightarrow [/mm] \ \ f'(t) \ = \ [mm] \bruch{1}{t}-0 [/mm] \ =\ ...$


Mittels MBKettenregel muss es lauten:

$f'(t) \ = \ [mm] \bruch{1}{\bruch{t}{x}}*\bruch{1}{x} [/mm] \ = \ ...$


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]