www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Ableitung komplexer Funktionen
Ableitung komplexer Funktionen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung komplexer Funktionen: Frage
Status: (Frage) beantwortet Status 
Datum: 16:30 Sa 28.05.2005
Autor: RePete

Hallo,

hab da mal eine Frage zum Ableiten einer komplexen Funktion.
Die Funktion sieht wie folgt aus:
[mm]f(z) = \frac{x^{2} + y^{2}}{x^{2} + y^{2} - x + iy}[/mm]
Das ganze hab ich wie folgt umgeschrieben:
[mm]f(z) = \frac{|z|^{2}}{|z|^{2} - \overline{z}}[/mm]
Ich weis auch das die Funktion für [mm]z \in \IC \backslash \{0,1\}[/mm] differenzierbar sein sollte! Allerdings weis ich nicht wie ich diese Funktion ableiten sollte. Ich könnte zwar alles in der arithmetischen Form lassen und dann [mm]Re(z)[/mm] [mm]Im(z)[/mm] ableiten aber da kommen riesig lange Polynome heraus und natürlich zusätzlich noch ein Bruch. Da die Lösung:
[mm]f'(z) = - \frac{1}{(z - 1)^{2}}[/mm]
aber auch in einer Form mit [mm]z[/mm] angegeben ist denke ich das es auch so geht. Ein Ansatz wäre eventuell auch das Umformen in die exponentielle Form aber  da blick ich in diesem Fall nicht ganz durch. Wäre schön wenn jemand trotz des schönen Wetters einen Lösungsansatz für dieses Problem hätte...

mfG Peter

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung komplexer Funktionen: mit z erweitern
Status: (Antwort) fertig Status 
Datum: 18:02 Sa 28.05.2005
Autor: Marc

Hallo Peter!

> hab da mal eine Frage zum Ableiten einer komplexen
> Funktion.
>  Die Funktion sieht wie folgt aus:
>  [mm]f(z) = \frac{x^{2} + y^{2}}{x^{2} + y^{2} - x + iy}[/mm]
>  Das
> ganze hab ich wie folgt umgeschrieben:
>  [mm]f(z) = \frac{|z|^{2}}{|z|^{2} - \overline{z}}[/mm]

Erweitere mal mit $z$ und die unhandlichen Beträge verschwinden...

Viele Grüße,
Marc

Bezug
                
Bezug
Ableitung komplexer Funktionen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:36 Sa 28.05.2005
Autor: RePete

Danke Marc!

komm nach dem Erweitern hierauf:
[mm]f(z) = \frac{z}{z - 1}[/mm]
Das läßt sich dann super ableiten und es kommt auch das gewünschte ergenis heraus!

mfG Peter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]