www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Ableitung ins Integral
Ableitung ins Integral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung ins Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Mi 29.06.2016
Autor: sanadros

Aufgabe
Wir definieren $ g $ durch

$ g: [mm] \mathbb{R} \rightarrow \mathbb{R}, [/mm] g(y):= [mm] \int_{y^{2}}^{e^{y^{2}}}\ln({1+x^{2}+y^{2}})dx $ [/mm]

bestimmen sie $  g'(y) $

OK man kann ja die Ableitung reinziehen und dann die Ränder auswerten um dann bekommt man

$ [mm] \int_{y^{2}}^{e^{y^{2}}} \frac{2y}{1+x^2+y^2} [/mm] + [mm] ln({1+e^{y^{4}}+y^{2}})*2*y*e^{y^{2}}-\ln({1+y^{4}+y^{2}})*2*y [/mm] $

Aber der Integral des Bruchs würde ja ein arcsin ergeben jedoch ist das Ziel wieder ein ln zu bekommen aber ich weiss jetzt nicht wie ich den bekomme?

        
Bezug
Ableitung ins Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 09:17 Do 30.06.2016
Autor: fred97


> Wir definieren [mm]g[/mm] durch
>  
> [mm]g: \mathbb{R} \rightarrow \mathbb{R}, g(y):= \int_{y^{2}}^{e^{y^{2}}}\ln({1+x^{2}+y^{2}})dx [/mm]
>  
> bestimmen sie [mm]g'(y)[/mm]
>  OK man kann ja die Ableitung reinziehen und dann die
> Ränder auswerten um dann bekommt man
>  
> [mm] \int_{y^{2}}^{e^{y^{2}}} \frac{2y}{1+x^2+y^2} + ln({1+e^{y^{4}}+y^{2}})*2*y*e^{y^{2}}-\ln({1+y^{4}+y^{2}})*2*y[/mm]
>  
> Aber der Integral des Bruchs würde ja ein arcsin ergeben




Eher arctan.


> jedoch ist das Ziel wieder ein ln zu bekommen aber ich
> weiss jetzt nicht wie ich den bekomme?

Ist y fest, so ist eine Stammfunktion von  [mm] \frac{2y}{1+x^2+y^2} [/mm] (bezüglich x) gegeben durch

[mm] \bruch{2y}{\wurzel{1+y^2}}*\arctan(\bruch{x}{\wurzel{1+y^2}}) [/mm]

Wenn Du auf Biegen und Brechen den [mm] \ln [/mm] drin haben willst, so schau mal hier nach unter "atan2".

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]