Ableitung einer ln Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Ableitung von [mm] $f_t(x) [/mm] = [mm] \ln\left(t*\bruch{1+x}{1-x} \right)$ [/mm] |
Hallo, ich wollte die Ableitung folgender Funktion bilden [mm] f_t(x) [/mm] = [mm] ln\left(t*\bruch{1+x}{1-x} \right). [/mm] Meine Lösung ist folgende: [mm] f_t'(x) [/mm] = 1 / ((1+x)/(1-x)*t) * [mm] (1*(1-x)-(t+x)*(-1))/(1-x)^2 [/mm] = (1-x)/((1+x)*t) * (1+t)/(1-x) = [mm] \left \bruch{1+t}{(1-x)*(1+x)*t} \right [/mm] . Im Lösungsbuch steht jedoch folgendes Ergebnis: [mm] f_t'(x) [/mm] = [mm] \left \bruch{2}{(1+x)*(1-x)}\right [/mm] und das ist ja nicht dasselbe, soviel ich weiß. Nur welche der beiden Lösungen stimmt nun? Falls meine Lösung richtig sein sollte, wäre es nett, wenn ihr mir die 2te und 3te Ableitung als Kontrollergebniss mitangeben könntet. Für die Lösung aus dem Lösungsbuch habe ich die 2te und 3te Ableitung auch.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 04:18 Sa 18.02.2006 | Autor: | ardik |
Aufgabe | Ableitung von [mm]f_t(x)[/mm] = [mm]ln\left(t*\bruch{1+x}{1-x} \right)[/mm] |
Hi Michael,
> Meine Lösung ist folgende:
> [mm]f_t'(x) = \bruch{1}{\bruch{1+x}{1-x}*t} * \bruch{1*(1-x)-(t+x)*(-1)}{(1-x)^2}[/mm] = [mm] $\bruch{(1-x)}{(1+x)*t} [/mm] * [mm] \bruch{(1+t)}{(1-x)}$ [/mm] = [mm]\left \bruch{1+t}{(1-x)*(1+x)*t} \right[/mm] .
Mit dem $t$ in der Klammer ist was schief gelaufen. Dieser Faktor vor dem Bruch muss ja beim Ableiten des Bruches unverändert erhalten bleiben. Zum zweiten ist ein $t$ hingerutscht, wo keins hingehört, nämlich in die Klammer $(t+x)$.
Auch ist mir Dein zweites Zusammenfassen nicht einsichtig: Wo ist das $(1-x)$ aus dem Zähler geblieben (bzw: warum steht im Nenner noch eins)?
Das fehlende $t$ würde sich dann schön mit dem überzähligen aus dem Nenner kürzen und die $1$ statt des $t$ in der Klammer ergänzt sich mit der anderen $1$ dann zur $2$
Alles klar?
Schöne Grüße,
ardik
PS:
Ich hoffe, ich habe Deine Formel korrekt umformatiert...
|
|
|
|
|
ist die ableitung von ln(t) = 0 ???
|
|
|
|
|
Hallo,
ja, es wird ja nach x abgeleitet, da ist [mm] $\ln(t)$ [/mm] "nur" eine additive KOnstante - eine reelle Zahl. Und wird beim Ableiten zu Null
Gruß
schachuzipus
|
|
|
|