www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitung einer Funktion
Ableitung einer Funktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung einer Funktion: Differenzenquotient
Status: (Frage) beantwortet Status 
Datum: 23:31 Do 04.05.2006
Autor: nali

Aufgabe
Diese Aufgabe habe ich aus einem Buch abgeschrieben.
leiten sie die Funktion [mm] f(x)=x^{-2} [/mm] nach x ab

Bitte auf korrekte Schreibweise prüfen.
[mm] \limes_{x\rightarrow\ 0 } \bruch{(x_{0}+\Delta{x} )^{-2}-x_{0}^{-2}}{\Delta{x} } [/mm]
[mm] \limes_{x\rightarrow\ 0 } \bruch{ \bruch{1}{(x_{0}+\Delta{x} )^{2}}- \bruch{1}{x_{0}^{2}}}{\Delta{x} } [/mm]
Wie komme ich auf die unten stehende Gleichung?
[mm] \limes_{x\rightarrow\ 0 } \bruch{x_{0}^2-(x_{0}+\Delta{x})^2}{\Delta{x}*x_{0}^2*(x_{0}+\Delta{x})^2} [/mm]
Kann mir jemand diesen Schritt erklären? Bitte ausführlich. Ich könnte mir denken das es was mit der Mulitiplikation von Brüchen und dem Kehrwert zu tun hat aber warum wird der Term vertauscht? => aus [mm] -x^2 [/mm] plötzlich [mm] x^2 [/mm] <=


        
Bezug
Ableitung einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Do 04.05.2006
Autor: Bastiane

Hallo!

> Diese Aufgabe habe ich aus einem Buch abgeschrieben.
>  leiten sie die Funktion [mm]f(x)=x^{-2}[/mm] nach x ab
>  Bitte auf korrekte Schreibweise prüfen.
>  [mm]\limes_{x\rightarrow\ 0 } \bruch{(x_{0}+\Delta{x} )^{-2}-x_{0}^{-2}}{\Delta{x} }[/mm]
>  
> [mm]\limes_{x\rightarrow\ 0 } \bruch{ \bruch{1}{(x_{0}+\Delta{x} )^{2}}- \bruch{1}{x_{0}^{2}}}{\Delta{x} }[/mm]
>  
> Wie komme ich auf die unten stehende Gleichung?
>  [mm]\limes_{x\rightarrow\ 0 } \bruch{x_{0}^2-(x_{0}+\Delta{x})^2}{\Delta{x}*x_{0}^2*(x_{0}+\Delta{x})^2}[/mm]

  

> Kann mir jemand diesen Schritt erklären? Bitte ausführlich.
> Ich könnte mir denken das es was mit der Mulitiplikation
> von Brüchen und dem Kehrwert zu tun hat aber warum wird der
> Term vertauscht? => aus [mm]-x^2[/mm] plötzlich [mm]x^2[/mm] <=

Das ist eigentlich nur simples Bruchrechnen. :-) Wir haben doch im Zähler stehen:

[mm] \bruch{1}{(x_{0}+\Delta{x} )^{2}}- \bruch{1}{x_{0}^{2}} [/mm]

das erweitern wir so, dass wir beide Brüche addieren (bzw. subtrahieren) können, also den linken Bruch erweitern wir mit [mm] x_0^2 [/mm] und den rechten mit [mm] (x_0+\Delta{x})^2, [/mm] dann erhalten wir:

[mm] \bruch{x_0^2}{x_0^2(x_0+\Delta{x})^2}-\bruch{(x_0+\Delta{x})^2}{x_0^2(x_0+\Delta{x})^2} [/mm]

Das können wir nun auf einen Bruchstrich schreiben:

[mm] \bruch{x_0^2-(x_0+\Delta{x})^2}{x_0^2(x_0+\Delta{x})^2} [/mm]

Und wenn wir nun noch den Nenner von oben hinzunehmen, erhalten wir:

[mm] \bruch{\bruch{x_0^2-(x_0+\Delta{x})^2}{x_0^2(x_0+\Delta{x})^2}}{\Delta{x}} [/mm]

und das ist nach den Bruchrechenregeln das Gleiche wie:

[mm] \bruch{x_0^2-(x_0+\Delta{x})^2}{x_0^2(x_0+\Delta{x})^2}*\bruch{1}{\Delta{x}} [/mm]

also gleich:

[mm] \bruch{x_{0}^2-(x_{0}+\Delta{x})^2}{\Delta{x}*x_{0}^2*(x_{0}+\Delta{x})^2} [/mm]

Alles klar nun?

viele Grüße
Bastiane
[cap]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]