www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitung einer Exponentialfkt
Ableitung einer Exponentialfkt < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung einer Exponentialfkt: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:59 So 09.03.2008
Autor: euromark

Aufgabe
Leite folgende Exponentialfunktion ab:
[mm]\bruch{7e^x}{(2-e^x)^2}[/mm]

Ich komme dur ch die Quotientenregel auf folgendes Ergebnis:
[mm]\bruch{4-30e^x+7e^2x+7e^3x}{6-3e^x}[/mm]
Das Ergebnis kommt mir komisch vor, habe ich irgendetwas übersehen, da ich leider bei [mm] e^x [/mm] Funktionen noch nicht ganz durchblicke.

Danke im voraus



        
Bezug
Ableitung einer Exponentialfkt: Zwischenschritte
Status: (Antwort) fertig Status 
Datum: 15:02 So 09.03.2008
Autor: Loddar

Hallo euromark!


Da solltest Du schon mal einige Zwischenschritte Deiner Rechnung posten.

Zur e-Funktion brauchst Du bei der Ableitung lediglich wissen, dass gilt:
[mm] $$\left( \ e^x \ \right)' [/mm] \ = \ [mm] e^x$$ [/mm]

Für Deine spezielle Funktion und der MBQuotientenregel beginne wie folgt:

$$u \ := \ [mm] 7*e^x [/mm] \ \ \ [mm] \Rightarrow [/mm] \ \ \ u' \ = \ ...$$
$$v \ := \ [mm] \left(2-e^x\right)^2 [/mm] \ \ \ [mm] \Rightarrow [/mm] \ \ \ v' \ = \ ...$$

Gruß
Loddar


Bezug
                
Bezug
Ableitung einer Exponentialfkt: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:11 So 09.03.2008
Autor: euromark

[mm] v=7e^x v´=7e^x [/mm]
u= [mm] (s-e^x)^2 v'=2*(2-e^x) [/mm]

Dann habe ich folgendes:
[mm]\bruch{2*(2-e^x)+e^x*7e^x-(2-e^x)^2*7e^x}{3*(2-e^x)}[/mm]

Ausmultipliziert und zusammengefasst ergibt es dann das Ergebnis von 1.

Gruß Markus

Bezug
                        
Bezug
Ableitung einer Exponentialfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 So 09.03.2008
Autor: Steffi21

Hallo,

[mm] u=7e^{x} [/mm]

[mm] u'=7e^{x} [/mm]

ist so korrekt

[mm] v=(2-e^{x})^{2} [/mm]

[mm] v'=2*(2-e^{x})*(-e^{x}) [/mm]

der Faktor [mm] (-e^{x}) [/mm] kommt von der inneren Ableitung, jetzt wieder Quotientenregel,

Steffi



Bezug
                                
Bezug
Ableitung einer Exponentialfkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 So 09.03.2008
Autor: euromark

Vielen dank.

Ich habe dann die Quotientenregel angewendet und folgendes aufgestellt:

[mm]\bruch{7e^x*(2*(2-e^x)*(-e^x)-7e^x*(2-e^x)^2}{((2-e^x)^2)^2}[/mm]

Ausmultipliziert kommt bei mir folgendes heraus:
[mm]\bruch{-28e^2x+14e^3x-7e^x*(4-4e^x+e^2x)}{(2-e^x)^4}}[/mm]

=[mm]\bruch{-28e^2x+14e^3x-28e^x+28e^2x-7e^3x}{(2-e^x)^4}[/mm]

=[mm]\bruch{7e^3x-28e^x}{(2-e^x)^4}[/mm]

Stimmt mein Ergebnis, oder kann man da noch etwas kürzen?

Vielen dank im voraus

Gruß Markus



Bezug
                                        
Bezug
Ableitung einer Exponentialfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 So 09.03.2008
Autor: Tyskie84

Hallo!

Es ist [mm] f'(x)=\bruch{u'v-uv'}{v²} [/mm] Demnach was Steffi21 dir sagte kommt folgendes raus:

[mm] f'(x)=\bruch{7e^{x}\cdot(2-e^{x})²+7e^{x}\cdot 2e^{x}\cdot(2-e^{x})}{(2-e^{x})^{4}} [/mm] Bevor wir jetzt zusammenfassen kürzen wir erst einmal durch [mm] (2-e^{x}). [/mm] Es ist die Regel das man erst kürzt bevor man zusammenfasst weil es einfacher ist. Nun folgt nach dem kürzen.
[mm] \Rightarrow f'(x)=\bruch{7e^{x}\cdot(2-e^{x})+7e^{x}\cdot 2e^{x}}{(2-e^{x})³} [/mm] Nun fassen wir zusammen :-)

[mm] \Rightarrow f'(x)=\bruch{14e^{x}-7e^{2x}+14e^{2x}}{(2-e^{x})³}=\bruch{14e^{x}+7e^{2x}}{(2-e^{x})³} [/mm] Nun klammern wir noch was aus damit es "schöner" da steht:
[mm] \Rightarrow f'(x)=\bruch{7e^{x}(7+e^{x})}{(2-e^{x})³} [/mm]

[cap] Gruß


Bezug
                                                
Bezug
Ableitung einer Exponentialfkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:33 So 09.03.2008
Autor: euromark

Vielen dank,
war mir nicht sicher, ob man einfach so kürzen darf, wegen der Summe im Nenner.

Gruß Markus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]