www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Ableitung arcsin
Ableitung arcsin < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung arcsin: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:24 Do 19.01.2017
Autor: X3nion

Hallo zusammen!

Ich habe eine Frage zur Ableitung des arcsin, wie sie in einer Literatur geführt wird.

Gegeben ist also die Funktion arcsin: [-1, 1] [mm] \mapsto \IR [/mm] als Umkehrfunktion von sin: [mm] [-\frac{\pi}{2}, \frac{\pi}{2}] \mapsto \IR. [/mm]

Für x [mm] \in [/mm] ]-1, 1[ gilt gemäßt der Ableitungsregel der Umkehrfunktion:

arcsin'(x) = [mm] \frac{1}{sin'(arcsin x)} [/mm] = [mm] \frac{1}{cos(arcsin x)} [/mm]

Sei nun y:= arcsin x. Dann ist sin y = x und cos y = [mm] +\wurzel{1-x^{2}}, [/mm] da y [mm] \in [-\frac{\pi}{2}, \frac{\pi}{2}]. [/mm] Also ergibt sich

[mm] \frac{d arcsin x}{dx} [/mm] = [mm] \frac{1}{\wurzel{1-x^{2}}} [/mm] für -1 < x < 1.

---

Wo ich eine Frage habe ist diese Stelle:

> Sei nun y:= arcsin x. Dann ist sin y = x und cos y = [mm] +\wurzel{1-x^{2}}, [/mm]
> da y [mm] \in [-\frac{\pi}{2}, \frac{\pi}{2}] [/mm]

Es ist mir klar, dass wegen y [mm] \in [-\frac{\pi}{2}, \frac{\pi}{2}] [/mm] cos y [mm] \ge [/mm] 0 ist. Aber wieso steht das + bei cos y = [mm] +\wurzel{1-x^{2}} [/mm] ?
Aus sin² y + cos² y = 1 folgt ja cos² y = 1 - sin² y.
Ist es nun so, dass aus cos² y entweder cos y = [mm] +\wurzel{1-x^{2}} [/mm] oder - [mm] \wurzel{1-x^{2}} [/mm] folgen kann, und wegen y [mm] \in [-\frac{\pi}{2}, \frac{\pi}{2}] [/mm] deshalb nur cos y = [mm] +\wurzel{1-x^{2}} [/mm] gelten kann?


Viele Grüße,
X3nion

        
Bezug
Ableitung arcsin: Antwort
Status: (Antwort) fertig Status 
Datum: 05:27 Do 19.01.2017
Autor: fred97


> Hallo zusammen!
>  
> Ich habe eine Frage zur Ableitung des arcsin, wie sie in
> einer Literatur geführt wird.
>  
> Gegeben ist also die Funktion arcsin: [-1, 1] [mm]\mapsto \IR[/mm]
> als Umkehrfunktion von sin: [mm][-\frac{\pi}{2}, \frac{\pi}{2}] \mapsto \IR.[/mm]
>  
> Für x [mm]\in[/mm] ]-1, 1[ gilt gemäßt der Ableitungsregel der
> Umkehrfunktion:
>  
> arcsin'(x) = [mm]\frac{1}{sin'(arcsin x)}[/mm] = [mm]\frac{1}{cos(arcsin x)}[/mm]
>  
> Sei nun y:= arcsin x. Dann ist sin y = x und cos y =
> [mm]+\wurzel{1-x^{2}},[/mm] da y [mm]\in [-\frac{\pi}{2}, \frac{\pi}{2}].[/mm]
> Also ergibt sich
>  
> [mm]\frac{d arcsin x}{dx}[/mm] = [mm]\frac{1}{\wurzel{1-x^{2}}}[/mm] für -1
> < x < 1.
>  
> ---
>  
> Wo ich eine Frage habe ist diese Stelle:
>  > Sei nun y:= arcsin x. Dann ist sin y = x und cos y =

> [mm]+\wurzel{1-x^{2}},[/mm]
> > da y [mm]\in [-\frac{\pi}{2}, \frac{\pi}{2}][/mm]
>  
> Es ist mir klar, dass wegen y [mm]\in [-\frac{\pi}{2}, \frac{\pi}{2}][/mm]
> cos y [mm]\ge[/mm] 0 ist. Aber wieso steht das + bei cos y =
> [mm]+\wurzel{1-x^{2}}[/mm] ?
>  Aus sin² y + cos² y = 1 folgt ja cos² y = 1 - sin² y.
> Ist es nun so, dass aus cos² y entweder cos y =
> [mm]+\wurzel{1-x^{2}}[/mm] oder - [mm]\wurzel{1-x^{2}}[/mm] folgen kann, und
> wegen y [mm]\in [-\frac{\pi}{2}, \frac{\pi}{2}][/mm] deshalb nur
> cos y = [mm]+\wurzel{1-x^{2}}[/mm] gelten kann?

ja, für y in diesem Intervall ist cos y [mm] \ge [/mm] 0.


>  
>
> Viele Grüße,
>  X3nion


Bezug
                
Bezug
Ableitung arcsin: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:59 Do 19.01.2017
Autor: X3nion

Alles klar Dankeschön, dann lag ich doch richtig!

Gruß X3nion

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]