www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitung Quotientenregel
Ableitung Quotientenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung Quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 Mo 26.03.2012
Autor: Hoang84

Aufgabe
f(y) = [mm] \bruch{x+y}{y^{3}} [/mm]




Hallo Leute,
Ich schaffe es nicht, die erste Ableitung zu der Funktion herzuleiten.

Mit der Produktregel kriege ich: [mm] \bruch{-3x-2y}{y^4} [/mm]

Bei der Quotientenregel hänge ich an:

[mm] \bruch{y^3 - (- \bruch{3}{y^4} * (x+y))}{y^6} [/mm]

Ich habe jetzt noch ein bischen rumgespielt, komme aber nicht zum Ergebnis.

[mm] \bruch{y^{3} + \bruch{3(x-y)}{y^4}}{y^6} [/mm]

Kann mir jemand sagen, wo mein Denkfehler gerade liegt?

Ich habe diese Frage in keinem anderem Forum gestellt.

        
Bezug
Ableitung Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 Mo 26.03.2012
Autor: Steffi21

Hallo, du möchtest nach x ableiten, warum so kompliziert, zerlege in

[mm] f(x)=\bruch{x}{y^3}+\bruch{y}{y^3}=\bruch{1}{y^3}*x+\bruch{1}{y^2} [/mm]

jetzt summandenweise ableiten, y ist eine Konstante

Steffi

Bezug
                
Bezug
Ableitung Quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Mo 26.03.2012
Autor: Hoang84

Hallo,
Ich habe mich verschrieben. Das ganz soll partiell nach y abgeleitet werden.

Also f(y) = [mm] \bruch{x+y}{y^3} [/mm]

Bezug
                        
Bezug
Ableitung Quotientenregel: Bruch zerlegen
Status: (Antwort) fertig Status 
Datum: 19:35 Mo 26.03.2012
Autor: Loddar

Hallo Hoang!


Auch das kannst Du zerlegen:

$f(y) \ = \ [mm] \bruch{x+y}{y^3} [/mm] \ = \ [mm] \bruch{x}{y^3}+\bruch{y}{y^3} [/mm] \ = \ [mm] \bruch{x}{y^3}+\bruch{1}{y^2} [/mm] \ = \ [mm] x*y^{-3}+y^{-2}$ [/mm]


Gruß
Loddar


Bezug
                                
Bezug
Ableitung Quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Mo 26.03.2012
Autor: Hoang84

Hallo,

Vielen Dank erstmal für die Antworten.

Ich weiß schon, dass ich auf anders auf das Ergebnis komme. Mit der Produktregel bin ich auch schon zum Ziel gekommen.

Ich möchte aber genau die Quotientenregel darauf anwenden, weil ich damit irgendwie nicht auf das Ergebnis komme. Ich bräuchte also eine Idee das ganze irgendwie umzuformen.

Bezug
                                        
Bezug
Ableitung Quotientenregel: siehe unten!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:42 Mo 26.03.2012
Autor: Loddar

Hallo!


Siehe unten!


Gruß
Loddar


Bezug
                                        
Bezug
Ableitung Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Mo 26.03.2012
Autor: Steffi21

Hallo, na gut, gehen wir den riesen Umweg über die Quotientenregel, Ableitung nach y

u=x+y

u'=1

[mm] v=y^3 [/mm]

[mm] v'=3y^2 [/mm]

[mm] f'(y)=\bruch{1*y^3-(x+y)*3y^2}{y^6}=\bruch{y-(x+y)*3}{y^4}=\bruch{-3x-2y}{y^4} [/mm]

Steffi





Bezug
        
Bezug
Ableitung Quotientenregel: Korrektur
Status: (Antwort) fertig Status 
Datum: 19:37 Mo 26.03.2012
Autor: Loddar

Hallo Hoang!


> Bei der Quotientenregel hänge ich an:
>  
> [mm]\bruch{y^3 - (- \bruch{3}{y^4} * (x+y))}{y^6}[/mm]

Wie kommst Du hier auf den Doppelbruch? [aeh]

Es gilt doch bei der MBQuotientenregel mit $v \ = \ [mm] y^3$ $\Rightarrow$ [/mm]  $v' \ = \ [mm] 3*y^2$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Ableitung Quotientenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:41 Mo 26.03.2012
Autor: Hoang84

OMG!

Vielen Dank Loddar. Ich hatte irgendwie [mm] 1/y^3 [/mm] abgeleitet. *gg*

Jetzt komme ich auch zum Ergebnis.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]