www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitung LN- Funktion
Ableitung LN- Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung LN- Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Sa 03.02.2007
Autor: Maggons

Aufgabe
Bilden sie die Ableitung von

a) 0,5 * [mm] ln(x^{2}+1) [/mm]

b) [mm] \bruch{ln(x)}{x} [/mm]

Hallo!

Ich habe große Probleme bei der Ableitung der oben genannten Funktionen.

Mir ist klar, dass die Ableitung von ln(x) [mm] \bruch{1}{x} [/mm] ist, jedoch weiß ich nicht, wie es sich bei der obigen Aufgabe auflöst. Ich gehe davon aus, dass der Vorfaktor 0,5 erhalten bleibt, habe dann jedoch leider keine Ahnung, wie man die ln- Funktion auflösen muss. Wäre sehr dankbar für einen kleinen Tipp :)

Bei der 2. Aufgabe muss man meiner Meinung nach die Quotientenregel benutzen; ich weiß jedoch auch hier nich sicher wie ich die ln- Funktionen auflösen soll. Wäre auch hier dankbar für einen kleinen Tipp :)

Ich habe diese Frage in keinem anderen Internetforum gestellt.

Mit freundlichen Grüßen

Maggons

        
Bezug
Ableitung LN- Funktion: Lösung
Status: (Antwort) fertig Status 
Datum: 17:45 Sa 03.02.2007
Autor: Elph

zu a)
Der faktor 0,5 bleibt unverändert, für den Rest muss man die Kettenregel anwenden. Also erst du äußere Funtkion ableiten:
[mm] \bruch{1}{x^2 + 1} [/mm]
Dann mit der inneren Ableitung multiplizieren:
f'(x) = [mm] \bruch{0,5*2x}{x^2 + 1} [/mm]
Noch 0,5*2 = 1 einsetzen und fertig.
zu b)
Ja, man braucht die Quotientenregel, also sieht die Ableitung zunächst so aus:
f'(x) = [mm] \bruch{1/x*x - ln(x)*1}{x^2} [/mm]
Jetzt noch ausmultiplizieren und kürzen - fertig.

Bezug
                
Bezug
Ableitung LN- Funktion: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 19:09 Sa 03.02.2007
Autor: Maggons

Oh vielen dank; habe das gerade nachgerechnet und klappt super so, wenn man denn weiß wie man es machen muss :D

vielen vielen dank, ciao

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]