www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Ableitung Heavyside Funktion
Ableitung Heavyside Funktion < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung Heavyside Funktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:51 Fr 27.10.2017
Autor: Noya

Aufgabe
Berechne die erste und die zweite Ableitung der Heavyside-Funktion f(x)= χ{x>0} im Distributionssinne, d.h. drücke für

[mm] -\integral \phi'(x)f(x)dx [/mm] und [mm] \integral \phi''(x)f(x)dx [/mm]

analog zur Vorlesung mit einer Formel aus, in der möglichst niedgrige Ableitungen von [mm] \phi \in C^{\infty}_0 (\IRR)vorkommen. [/mm]


Hallo ihr Lieben,

könntet ihr mir hier nochmal behilflich sein?

Heavyside Funktion :
[mm] $f(x)=\begin{cases} 0, & \mbox{für } x < 0 \\ 1, & \mbox{für } x \ge 0 \end{cases}$ [/mm]

aus f(x)= χ{x>0} entnehme ich, dass ich nur für x>0 betrachten soll oder? oder was soll mir das sagen?
aber muss ich dann überhaupt über distribution gehen?

betrachten muss ich doch :
[mm] \phi \in C^{\infty}_0 (\IR) [/mm]
[mm] \integral_{\IR} f(x)*\phi'(x)dx [/mm] oder?






        
Bezug
Ableitung Heavyside Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:18 Sa 28.10.2017
Autor: Gonozal_IX

Hallo Noya,

manchmal hilft ein Blick in die Wikipedia, siehe []hier

Gruß,
Gono

Bezug
                
Bezug
Ableitung Heavyside Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:54 So 29.10.2017
Autor: Noya

Ja, danke. Reingeguckt hatte ich da auch aber das Bsp übersehen.

Im Beispiel steht
[mm] (H',\phi)=-(H,\phi') [/mm]
das sind Sachen die wir in der Vorlesung nie benutzt oder gesehen haben...

ich habe das hier so versucht.

[mm] \integral_{\IR}{f(x)*\phi' dx} [/mm] =
[mm] \integral_{-\infty}^{0}{0*\phi' dx}+\integral_{0}^{\infty}{1*\phi' dx} [/mm]
[mm] =\phi(0) [/mm]

aber wie bekäme ich denn die zweite Ableitung?

Bezug
                        
Bezug
Ableitung Heavyside Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Mo 30.10.2017
Autor: mathfunnel

Hallo Noya!

Deine erste Ableitung schummelt etwas mit den Vorzeichen:
[mm] -\int_{\mathbb R} \Phi'(x)f(x) dx = -\int_{0}^\infty \Phi'(x) dx = \Phi(0) [/mm]

Die zweite Ableitung ist analog:
[mm] \int_{\mathbb R} \Phi''(x)f(x) dx = \int_{0}^\infty \Phi''(x) dx = -\Phi'(0) [/mm]

LG mathfunnel

Bezug
        
Bezug
Ableitung Heavyside Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Di 31.10.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]