www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Ableitung Funktion
Ableitung Funktion < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Do 17.02.2011
Autor: hh12

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich weiß leider nicht wie ich die Folgende Funktion mit Hilfe der Produktregel ableiten soll.

(Produktregel: f'(x): u'(x)*v(x)+ u(x)* v'(x))

H(x)=k²/2l(cos(l*x)*sin(l*x)+l*x)


wäre echt nett wenn ihr mir helfen könntet.

        
Bezug
Ableitung Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Do 17.02.2011
Autor: wieschoo


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> ich weiß leider nicht wie ich die Folgende Funktion mit
> Hilfe der Produktregel ableiten soll.
>  
> (Produktregel: f'(x): u'(x)*v(x)+ u(x)* v'(x))
>  
> H(x)=k²/2l(cos(l*x)*sin(l*x)+l*x)

[mm]H(x)=\underbrace{\frac{k^2}{2*l}}_{\textrm{konstanter Faktor}}*(\underbrace{\underbrace{\cos (l*x)}_{\textrm{Produktregel 1. Faktor}}*\underbrace{\sin (l*x)}_{\textrm{Produktregel 2. Faktor}}}_{\textrm{Summenregel 1. Summand}}+\underbrace{l*x}_{\textrm{Summenregel 2. Summand}})[/mm]
konstante Faktoren bleiben erhalten
Summenregel [mm](u(x)+v(x))'=u'(x)+v'(x)[/mm]
Produktregel [mm](uv)'=u'v+uv'[/mm]

Ich würde dir empfehlen es so umzubennenen
[mm]H(x)=\frac{k^2}{2l}(\blue{\cos(l*x)*\sin(l*x)}+l*x)=\frac{k^2}{2l}(\blue{p(x)}+l*x)[/mm]
[mm]H'(x)=(\frac{k^2}{2l}(\blue{p(x)}+l*x))'=\frac{k^2}{2l}(\blue{p'(x)}+l)[/mm]

Das p' erhälst du durch die Produktregel


>  
>
> wäre echt nett wenn ihr mir helfen könntet.


Bezug
                
Bezug
Ableitung Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Do 17.02.2011
Autor: hh12

hmm...okay, aber muss ich denn nicht noch cos und sin ableiten und in die Ableitung noch mit einbringen?

Bezug
                        
Bezug
Ableitung Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Do 17.02.2011
Autor: MathePower

Hallo  hh12,


[willkommenmr]


> hmm...okay, aber muss ich denn nicht noch cos und sin
> ableiten und in die Ableitung noch mit einbringen?


Das musst Du noch machen, ja.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]