www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Ableitung - Matrixdarst
Ableitung - Matrixdarst < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung - Matrixdarst: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 07:16 Di 15.06.2010
Autor: Marie_

Aufgabe
Es ist die Funktion f: [mm] \IR^3 \to \IR^3 [/mm] mit

[mm] f(r,\alpha,\beta) [/mm] = (r * [mm] cos(\alpha) [/mm] , r * [mm] sin(\alpha ) cos(\beta) [/mm] , r * [mm] sin(\alpha ) sin(\beta)) [/mm]

gegeben (Kugelkoordinaten).
Nun soll die Matrixdarstellung [ df( r , [mm] \alpha [/mm] , [mm] \beta [/mm] ) ] von df (Ableitung) an der Stelle ( r, [mm] \alpha [/mm] , [mm] \beta [/mm] ) berechnet werden.

Hallo,

diese Aufgabe bereitet mir Schwierigkeiten. Ich weiß nicht recht, wie ich dabei vorgehen soll. Muss ich doe Definition der Ableitung verwenden gemäß:

Wenn eine lineare Abbildung von [mm] \IR^m [/mm] nach [mm] \IR^n [/mm] existiert mit
[mm] \limes_{x\rightarrow 0} \bruch{|f(x+h)-f(x)-Ah}{|h|}, [/mm] dann gilt df(x) = A oder funktioniert das über partielle Ableitungen? Ich werde aus der Aufgabenstellung nicht ganz schlau...

Ich freue und bedanke mich für jede Hilfe!

Herzliche Grüße
Marie

        
Bezug
Ableitung - Matrixdarst: Antwort
Status: (Antwort) fertig Status 
Datum: 07:19 Di 15.06.2010
Autor: fred97

Du sollst die Jacobi-Matrix von f berechnen

FRED

Bezug
                
Bezug
Ableitung - Matrixdarst: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:24 Di 15.06.2010
Autor: Marie_

Hi,

danke FRED, das ging ja sehr fix!
Leider war die Jacobi-Matrix noch nicht Inhalt meiner Analysis-Vorlesung.
Kannst du mir bitte kurz erklären, wie man auf diese kommt...

Vielen Dank!

Gruß
Marie

Bezug
                        
Bezug
Ableitung - Matrixdarst: Antwort
Status: (Antwort) fertig Status 
Datum: 07:29 Di 15.06.2010
Autor: fred97


> Hi,
>  
> danke FRED, das ging ja sehr fix!
>  Leider war die Jacobi-Matrix noch nicht Inhalt meiner
> Analysis-Vorlesung.
>  Kannst du mir bitte kurz erklären, wie man auf diese
> kommt...

http://de.wikipedia.org/wiki/Jacobi-Matrix

FRED


>  
> Vielen Dank!
>  
> Gruß
>  Marie


Bezug
                                
Bezug
Ableitung - Matrixdarst: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:53 Di 15.06.2010
Autor: Marie_

Hallo,

nun gut, dann komme ich auf diese Matrix:

[mm] \pmat{ cos(\alpha) & -r*sin(\alpha) & 0 \\ sin(\alpha)cos(\alpha) & r*cos(\alpha)cos(\beta) & -r*sin(\alpha)*sin(\beta) \\ sin(\alpha)sin(\beta) & r*cos(\alpha)sin(\beta) & r*sin(\alpha)cos(\beta)} [/mm]

Stimmt das so? War's das?

Dankeschön!

Gruß
Marie



Bezug
                                        
Bezug
Ableitung - Matrixdarst: Antwort
Status: (Antwort) fertig Status 
Datum: 08:12 Di 15.06.2010
Autor: schachuzipus

Hallo Marie_,

> Hallo,
>  
> nun gut, dann komme ich auf diese Matrix:
>  
> [mm]\pmat{ cos(\alpha) & -r*sin(\alpha) & 0 \\ sin(\alpha)cos(\red{\alpha}) & r*cos(\alpha)cos(\beta) & -r*sin(\alpha)*sin(\beta) \\ sin(\alpha)sin(\beta) & r*cos(\alpha)sin(\beta) & r*sin(\alpha)cos(\beta)}[/mm]

Da muss [mm] $\red{\beta}$ [/mm] stehen, vertippt!

Ansonsten [daumenhoch]


>  
> Stimmt das so? War's das?

Wenn ("nur") die Jakobimatrix zu berechnen war, dann ja!

>  
> Dankeschön!
>  
> Gruß
>  Marie
>  
>  


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]