www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Ableitung
Ableitung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: eine Frage
Status: (Frage) beantwortet Status 
Datum: 14:30 Mi 31.08.2005
Autor: biene23

Hi!

Bin beim Ableiten auf etwas gekommen, was ich nicht genau weiß:

Wie ist die Ableitung von cos³(3x)?

ist es

a.) 3 cos (3x) *3
b.) die Ableitung nach Produktregel also ausgeschreieben
cos(3x)*(cos²(3x))=cos(3x)*cos(3x)*cos(3x)
c.) etwas anderes


Wäre für Lösungsvorschläge sehr dankbar.

Bis denne Biene

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Ableitung: Kettenregel
Status: (Antwort) fertig Status 
Datum: 14:52 Mi 31.08.2005
Autor: Roadrunner

Hallo biene,

[willkommenmr]  !!


Du kannst entweder Deinen Weg b.) beschreiten, der mir aber ziemlich umständlich erscheint. Oder ...


Hast Du denn bereits von der MBKettenregel [mm] ($\leftarrow$ [i]click it ![/i]) gehört? Damit kannst Du die gesuchte Ableitung ziemlich schnell bilden. Dabei musst Du diese Kettenregel gleich zweimal anwenden. Gruß vom Roadrunner [/mm]

Bezug
                
Bezug
Ableitung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:48 Mi 31.08.2005
Autor: biene23

Danke für die warme Begrüßung!

Kettenregel ist ja dann - um auf mein Problem zurückzukommen - von der Form

    h( g(x) )³ = cos³(3x)

Die innere Ableitung (g(x)`) ist mir klar, aber die äußere ist problematisch:

gem. dem Beispiel 1.) für die Kettenregel wäre die Lösung dann ja

3*cos²(3x) * 3 = 9 * cos²(3x)

Mir ist bloß noch nich ganz klar, warum ich die Kettenregel hier 2x anwenden sollte.

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Mi 31.08.2005
Autor: Julius

Hallo Biene!

> Danke für die warme Begrüßung!

Auch von mir ein herzliches Willkommen! :-)
  

> Kettenregel ist ja dann - um auf mein Problem
> zurückzukommen - von der Form
>  
> h( g(x) )³ = cos³(3x)

Eigentlich sind hier drei Funktionen hintereinandergeschachtelt (uff! :-)).

Wir haben:

$f(x) = [mm] \red{\cos}\blue{^3} \red{(}\green{3x}\red{)} [/mm] = [mm] \blue{k(}\red{h(}\green{g(x)}\red{)}\blue{)}$ [/mm]

mit

[mm] $\green{g(x) = 3x}$, [/mm]
[mm] $\red{h(x) =\cos(x)}$, [/mm]
[mm] $\blue{k(x) = x^3}$. [/mm]

Siehst du das?

Wir haben:

$g'(x) = 3$,
$h'(x)= [mm] -\sin(x)$, [/mm]
$k'(x) = [mm] 3x^2$, [/mm]

und die zweifache Anwendung der Kettenregel liefert

$f'(x) = [mm] k'(\red{h(}\green{g(x)}\red{)}) \cdot h'(\green{g(x)}) \cdot [/mm] g'(x)$,

also:

$f'(x) = 3 [mm] (\red{\cos(}\green{3x}\red{)})^2 \cdot (-\sin(\green{3x})) \cdot [/mm] 3 = - 9 [mm] \cos^2(3x) \sin(3x)$. [/mm]

Liebe Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]