www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitung
Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Di 19.02.2008
Autor: krisu112

Hallo,

brauche mal einen Vergleich bei der Ableitung dieser Aufgabe, da ich das ziemlich kompliziert gelöst habe, denke das geht einfacher:

[mm] \bruch{(2*t+1)}{\wurzel{t^2+1}} [/mm]

Bitte um einen Lösungsvorschlag

Im Vorraus vielen Dank für eure Hilfe!

mfg

        
Bezug
Ableitung: Quotientenregel
Status: (Antwort) fertig Status 
Datum: 20:54 Di 19.02.2008
Autor: Loddar

Hallo krisu!


Wie hast Du denn das gelöst bzw. welche Ableitung erhältst Du denn?

Auf jeden Fall musst Du hier die MBQuotientenregel mit $u \ = \ 2*t+1$ sowie $v \ = \ [mm] \wurzel{t^2+1} [/mm] \ = \ [mm] \left(t^2+1\right)^{\bruch{1}{2}}$ [/mm] anwenden.


Gruß
Loddar


Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:56 Di 19.02.2008
Autor: krisu112

eben genau nach dieser Regel habe ich das auch gelöst, bräuchte aber mal einen anderen Lösungsweg zu dieser Aufgabe

mfg

Bezug
                        
Bezug
Ableitung: oder Produktregel
Status: (Antwort) fertig Status 
Datum: 20:58 Di 19.02.2008
Autor: Loddar

Hallo krisu!


Das wäre aber der "normale" Weg mittels MBQuotientenregel.

Alternativ kannst Du auch die MBProduktregel anwenden, wenn Du zunächst umformst zu:

$$f(t) \ = \ [mm] (2*t+1)*\left(t^2+1\right)^{-\bruch{1}{2}}$$ [/mm]

Gruß
Loddar


Bezug
                                
Bezug
Ableitung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:02 Di 19.02.2008
Autor: krisu112

Könntest du mir denn vielleicht deinen Rechenweg in Bezug auf die Quotientenregel erläutern?? Ein Ergebnis wär super!! Im Vorraus Daanke für eure Antworten.


mfg

Bezug
                                        
Bezug
Ableitung: andersrum!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:08 Di 19.02.2008
Autor: Loddar

Hallo krisu!


Das läuft hier aber genau andersrum! Du postest uns Dein Ergebnis mit Rechenweg und wir kontrollieren das.


Gruß
Loddar


Bezug
                                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 Di 19.02.2008
Autor: krisu112

...

[mm] \bruch{2t+1}{\wurzel{t^2+1}} [/mm]

Quotientenregel:

u=2t+1  
u'=2
[mm] v=\wurzel{t^2+1} [/mm]  
[mm] v'=\bruch {t}{\wurzel{t^2+1}} [/mm]

Diese Ergebnisse habe ich anschließend in die Quotientenregel eingesetzt!

[mm] \bruch{2*\wurzel{t^2+1} -(\bruch {t}{\wurzel{t^2+1}} *(2t+1))}{(\bruch {t}{\wurzel{t^2+1}})^2} [/mm]  

Und jetzt fängt der Spaß ja erst an! Wie vereinfache ich das denn am besten???

Das Ergebnis sollte:

[mm] \bruch{-(t-2)}{(t^2+1)^(1,5)} [/mm]

sein

Wäre dankbar wenn mir einer die Vereinfachung erklären könnte!

mfg krisu

Bezug
                                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Di 19.02.2008
Autor: steppenhahn

Nun ja... Woher hast du eigentlich das Ergebnis?

u = 2t+1
u' = 2

hast du richtig berechnet.

v = [mm] \wurzel{t^{2}+1} [/mm]
v' = [mm] \bruch{1}{2*\wurzel{t^{2}+1}}*2*t [/mm] = [mm] \bruch{t}{\wurzel{t^{2}+1}} [/mm]

ebenfalls.
Beim Einsetzen in die Quotientenregel hat's dann aber anscheinend gehapert :-)

Es ist

[mm] (\bruch{u}{v})' [/mm] = [mm] \bruch{u'*v-u*v'}{v^{2}} [/mm]

Du hast in den Nenner [mm] (v')^{2} [/mm] geschrieben! Ansonsten ist es aber richtig und es ergibt sich:

[mm] \bruch{2\cdot{}\wurzel{t^2+1} -(\bruch {t}{\wurzel{t^2+1}} \cdot{}(2t+1))}{(\wurzel{t^{2}+1})^{2}} [/mm]

Den Nenner kann man vereinfachen:

= [mm] \bruch{2\cdot{}\wurzel{t^2+1} -(\bruch {t}{\wurzel{t^2+1}} \cdot{}(2t+1))}{t^{2}+1} [/mm]

Nun erweitern wir mal Zähler und Nenner mit [mm] \bruch{\wurzel{t^{2}+1}}{\wurzel{t^{2}+1}}: [/mm]

[mm] \bruch{\wurzel{t^{2}+1}}{\wurzel{t^{2}+1}}*\bruch{2\cdot{}\wurzel{t^2+1} -(\bruch {t}{\wurzel{t^2+1}} \cdot{}(2t+1))}{t^{2}+1} [/mm]

= [mm] \bruch{2\cdot{}(t^2+1) -(t \cdot{}(2t+1))}{(t^{2}+1)^{\bruch{3}{2}}} [/mm]

= [mm] \bruch{2*t^2+2 - 2*t^2-t}{(t^{2}+1)^{\bruch{3}{2}}} [/mm]

= [mm] \bruch{2 -t}{(t^{2}+1)^{\bruch{3}{2}}} [/mm]

Also der Trick liegt nur beim Erweitern!

Bezug
                                                                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:52 Di 19.02.2008
Autor: krisu112

Super!!!!

Vielen Dank, hast mir wirklich weitergeholfen, danke für deine Bemühung!!!!!!!!

mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]