www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Ableitung
Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Erklärung
Status: (Frage) beantwortet Status 
Datum: 10:38 Di 05.02.2008
Autor: howtoadd

Aufgabe
Man macht bei der Ableitung einer Funktion mit Betrag einen Fallunterschied nach Positivem und Negativem innerhalb des Betrages!

hallo,

schreibe nächste woche meine mathe klausur, und hab da noch so einige lücken :(((

also, mit ableitungen bin ich ein bissl vertraut... aber der satz oben sagt mir nicht viel aus :( deswegen bin ich froh, wenn ihr mir erklären könntet was es für einen fallunterschied gibt und wie überhaupt eine ableitung von einem betrag aussieht...

ich habe diese frage in keinem anderen forum gestellt.

danke um alle bemühungen,
lieben gruß
howtoadd

        
Bezug
Ableitung: Definition anwenden
Status: (Antwort) fertig Status 
Datum: 10:42 Di 05.02.2008
Autor: Roadrunner

Hallo howtoadd!


Der Satz besagt lediglich, dass Du für den Betrag jeweils die Definition anwenden sollst und beide Teilfunktionen separat ableiten sollst.

[mm] $$|x|:=\begin{cases} -x, & \mbox{für } x \ < \ 0 \mbox{ } \\ +x, & \mbox{für } x \ \ge \ 0 \mbox{ } \end{cases}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:56 Di 05.02.2008
Autor: howtoadd

sorry aber das sagt mir irgendwie nichts :///

also, wo ist dann der fallunterschied?? und welche defintion? :((

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Di 05.02.2008
Autor: abakus

Wenn du von irgendwas den Betrag bildest, bleibt entweder alles, wie es ist, oder (falls es negativ ist), wird was positives draus.
Für Graphen bedeutet das, dass die Teile, die unterhalb der y-Achse liegen, nach oben gespiegelt werden (mit Konzequenzen für den jeweiligen Anstieg der gepiegelten Funktionsteile).

Bezug
                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:09 Di 05.02.2008
Autor: howtoadd

danke, also, wie ich es jetzt verstanden habe:

mal angenommen f (x) = 2x-3
und das jetzt in betragsstrichen: |2x-3| = 2x  +    3 ?????

weil das es ja vorher |-3|= 3 ???

aber da stand ja die ableitung einer funktion mit betrag, also:

a.)  |2x-3| die ableitung |2|= 2

und bei
b.)  |-2x-3| die ableitung |-2| =2   ??????

also wenn das so richtig ist, dann ändert sich doch trozdem nichts mit dem ergebnis, beide sind ja positiv, oder wird a.) aufgrund positiver zahl dann außerhalb der betragsstriche negativ ??
dann hätte man ja einen fallunterschied zwischen positivem und negativem...

Bezug
                                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 Di 05.02.2008
Autor: abakus


> danke, also, wie ich es jetzt verstanden habe:
>  
> mal angenommen f (x) = 2x-3
>  und das jetzt in betragsstrichen: |2x-3| = 2x  +    3

Unfug!
Mache eine Wertetabelle
x   y=2x-3
-2  -7
-1   -5
0   -3
1   -1
1,5  0
2   1
3    3
Jetzt bist du dran: Bilde in der folgenden Tabelle von sämtlichen oben angegebenen y-Werten den Betrag:
x   |2x-3|
-2  
-1  
0  
1  
1,5  
2  
3  



> ?????
>  
> weil das es ja vorher |-3|= 3 ???
>  
> aber da stand ja die ableitung einer funktion mit betrag,
> also:
>  
> a.)  |2x-3| die ableitung |2|= 2
>
> und bei
>  b.)  |-2x-3| die ableitung |-2| =2   ??????
>  
> also wenn das so richtig ist, dann ändert sich doch trozdem
> nichts mit dem ergebnis, beide sind ja positiv, oder wird
> a.) aufgrund positiver zahl dann außerhalb der
> betragsstriche negativ ??
> dann hätte man ja einen fallunterschied zwischen positivem
> und negativem...


Bezug
                                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:35 Di 05.02.2008
Autor: howtoadd

oops,

also:
x= -2 |2 * (-2) - 3|= |-7|= 7
x= -1 |2* (-1) -3 | = |-5|= 5
x= 0 |2* 0 -3|       = |-3|= 3
x=2  |2* 2 -3|       = |1| = 1

besser? :S

und wie ist das jetzt mit der ableitung?
war die richtig?

f (x)= -2x-3 ??
|-2x-3| = |-2| = 2 ??

danke um die erklärungen :))

Bezug
                                                        
Bezug
Ableitung: Fallunterscheidung
Status: (Antwort) fertig Status 
Datum: 11:43 Di 05.02.2008
Autor: Roadrunner

Hallo howtoadd!


Um die Ableitung einer Betragsfunktion zu bestimmen, muss man die mehrfach erwähnte Fallunterscheidung machen:

$$ [mm] f(x)=|2x-3|:=\begin{cases} -(2x-3), & \mbox{für } 2x-3 \ < \ 0 \mbox{ } \\ +(2x-3), & \mbox{für } 2x-3 \ \ge \ 0 \mbox{ } \end{cases} [/mm] = [mm] \begin{cases} -2x+3, & \mbox{für } x \ < \ \bruch{3}{2} \mbox{ } \\ +2x-3, & \mbox{für } x \ \ge \ \bruch{3}{2} \mbox{ } \end{cases} [/mm] $$
Nun kannst Du für diese beiden Teilfunktionen jeweils die Ableitung ermitteln.

Aufpassen musst Du jedoch an der "Nahtstelle" [mm] $x_0 [/mm] \ = \ [mm] \bruch{3}{2}$ [/mm] , da dort die Funktion nicht differenzierbar ist.


Gruß vom
Roadrunner


Bezug
                                                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 Di 05.02.2008
Autor: howtoadd

ich hab da doch noch eine frage ://///

wie ist man denn jetzt auf 3/2 gekommen? kann man das selbst bestimmen :////???

Bezug
                                                                        
Bezug
Ableitung: umgeformt
Status: (Antwort) fertig Status 
Datum: 11:55 Di 05.02.2008
Autor: Roadrunner

Hallo howtoadd!


Ich habe die Ungleichung $2x-3 \ < \ 0$ nach $x \ < \ ...$ umgestellt.
Und $2x-3_$ ist ja exakt, was innerhalb der Betragsstriche steht.


Gruß vom
Roadrunner


Bezug
                                                                                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Di 05.02.2008
Autor: howtoadd

o okey! :// mir fehlt ein mathegen :(((

dankeschön!

Bezug
                                                                        
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:56 Di 05.02.2008
Autor: howtoadd

ich hab jetzt die 3/2 einfach mal eingesetzt, ist die nullstelle der funktion... die frage hat sie erledigt, es sei denn, ich habs wieder falsch verstanden :///

Bezug
                                                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:05 Di 05.02.2008
Autor: howtoadd

oke, das verstehe ich...

wir haben jetzt einen fallunterschied gemacht, und wie gehts dann weiter?
also ich komme immer wieder auf meine lösung zurück.... denn wenn ich die ableitung beider gleichungen in betragsstriche fasse habe ich |-2| und |2| raus...

muss ich diese ergebnisse nun mit 3/2 vergleichen? dann ist |-2|=2 > 3/2

ist mir schon langsam peinlich :////

dankeschön nochmal für alle!

Bezug
                                                                        
Bezug
Ableitung: fallweise
Status: (Antwort) fertig Status 
Datum: 12:18 Di 05.02.2008
Autor: Roadrunner

Hallo howtoadd!


Wie heban doch nun die Funktion $f(x) \ = \ |2x-3|$ in diese beiden Teilfunktionen zerlegt:
[mm] $$f(x)=\begin{cases} -2x+3, & \mbox{für } x \ < \ \bruch{3}{2} \mbox{ } \\ +2x-3, & \mbox{für } x \ \ge \ \bruch{3}{2} \mbox{ } \end{cases}$$ [/mm]

Bilde nun also für beide Teilfunktionen [mm] $f_1(x) [/mm] \ = \ -2x+3$ bzw. [mm] $f_2(x) [/mm] \ = \ +2x-3$ jeweils die Ableitung (diese sollten ja kein Problem darstellen):
[mm] $$f'(x)=\begin{cases} ..., & \mbox{für } x \ < \ \bruch{3}{2} \mbox{ } \\ ..., & \mbox{für } x \ \ \red{>} \ \ \bruch{3}{2} \mbox{ } \end{cases}$$ [/mm]

Gruß vom
Roadrunner



Bezug
                                                                                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 Di 05.02.2008
Autor: howtoadd

aber das mache ich doch die ganze zeit :(((
die ableitung ist doch |-2| und |2|
die ableitung von |-2x-3| und |2x-3|

Bezug
                                                                                        
Bezug
Ableitung: ohne Betragsstriche!
Status: (Antwort) fertig Status 
Datum: 12:28 Di 05.02.2008
Autor: Roadrunner

Hallo howtoadd!


Durch unsere Fallunterscheidung haben wir doch extra die Betragsstriche aus unserer Funktionsvorschrift entfernt.

Wo sollen denn da plötzlich in der Ableitung die Betragsstriche wieder herkommen?


Gruß vom
Roadrunner


Bezug
                                                                                                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:43 Di 05.02.2008
Autor: howtoadd

dann die ableitung ohne betragsstriche, ergibt -2 und 2

ich gibs auf :((((

Bezug
                                                                                                        
Bezug
Ableitung: so richtig
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:51 Di 05.02.2008
Autor: Roadrunner

Hallo howtoadd!


So stimmt es dann. Du musst es nur noch sauberer mit der Fallunterscheidung aufschreiben (siehe oben).


Gruß vom
Roadrunner


Bezug
                                                                                                                
Bezug
Ableitung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:44 Di 05.02.2008
Autor: howtoadd

dankeschön!

Bezug
                        
Bezug
Ableitung: siehe oben!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:17 Di 05.02.2008
Autor: Roadrunner

Hallo howtoadd!


In meiner Antwort habe ich doch die Definition der Betragsfunktion aufgeführt.

Und die Fallunterscheidung ist dann stets: Argument kleiner als Null (Fall 1) oder Argument größer/gleich Null (Fall 2).


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]