www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Ableitung
Ableitung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Idee
Status: (Frage) beantwortet Status 
Datum: 14:09 Sa 02.09.2006
Autor: schlotti

Aufgabe
Bilden Sie f' von f(x)= [mm] \bruch{-2x(x^2+1)-(1-x^2)*4x}{(x^2+1)^3} [/mm]

Wäre nett wenn mir jemand erklären könnte wie ich an die Ableitung von dem Zähler komme.


Viele Grüße

Marcel

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 Sa 02.09.2006
Autor: Tequilla

Hi!
Also am einfachsten wäre es, wenn du im zähler alle klammern auflöst.
Dann hast du nur noch Summanden im Zähler stehen, von denen Du dann einfach die ableitung bilden kannst.

Und um die gesamte ableitung zu bilden, dann einfach die quotientenregel anwenden.


Bezug
                
Bezug
Ableitung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:22 Sa 02.09.2006
Autor: schlotti

hi.
schonmal vielen Dank für die Antwort, also erst die Klammern auflösen und dann die Quotientenregel anwenden?

Viele Grüße Marcel

Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Sa 02.09.2006
Autor: Tequilla

Genau ;-)
Wenn du die lösung hast, dann stelle die mal zu kontrolle rein, wenn du magst.



Bezug
                                
Bezug
Ableitung: richtig?
Status: (Frage) beantwortet Status 
Datum: 14:54 Sa 02.09.2006
Autor: schlotti

1000 Dank für die Hilfe wäre das dann so richtig?

[mm] f(x)=\bruch{-2x^3-2x-4x+4x^3}{(x^2+1)^3} [/mm]

[mm] f(x)=\bruch{2x^3-6x}{(x^2+1)^3} [/mm]

f'(x)= [mm] \bruch{(6x^2-6)*(x^2+1)^3-(2x^3-6x)*(6x(x^2+1)^2)}{(x^2+1)^5} [/mm]

[mm] f'(x)=\bruch{(6x^2-6)*(x^2+1)-(2x^3-6x)*6x}{(x^2+1)^3} [/mm]

[mm] f'(x)=\bruch{6x^4+36x^2-6}{(x^2+1)^3} [/mm]

Viele Grüße Marcel

Bezug
                                        
Bezug
Ableitung: nochmals nachrechnen
Status: (Antwort) fertig Status 
Datum: 15:16 Sa 02.09.2006
Autor: BeniMuller

Hallo Marcel

Gratuliere, du bist schon fast beim richtigen Ergebnis angekommen. Rechne es nochmals genau durch, dann kommst du bestimmt zu:

$f' \ = \  [mm] \bruch{-6(x^{4} \ - \ 6x^{2} \ + \ 1)}{(x^{2} \ + \ 1)^{4}} [/mm]  $


Kommst du so weiter ?

N.B.

Verwirrend sind deine Bezeichnungen der Ableitungen:

$f'' $ wäre bereits die zweite Ableitung, was nicht das gleiche ist, wie der zweite (-Rechen) Schritt der ersten Ableitung.

Analog bezeichent  $f'''$ normalerweise die dritte Ableitung.

Gruss aus Zürich

Bezug
                                                
Bezug
Ableitung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:01 Sa 02.09.2006
Autor: schlotti

hi, vielen Dank für die Hilfe
aber ich komm irgendwie nicht auf das Ergebnis wäre nett wenn mir jemand den Rechenweg dazu schreiben könnte.


Viele Grüße

Marcel

Bezug
                                                        
Bezug
Ableitung: Lösungsweg
Status: (Antwort) fertig Status 
Datum: 18:43 Sa 02.09.2006
Autor: miniscout

Hallo!

Hier der Lösungsweg:

$f(x)= [mm] \bruch{-2x(x^2+1)-(1-x^2)\cdot4x}{(x^2+1)^3} [/mm] $

$f(x)= [mm] \bruch{-2x^{3}-2x-4x+4x^3}{(x^2+1)^3} [/mm] $

$f(x)= [mm] \bruch{2x^3-6x}{(x^2+1)^3} [/mm] $


$f'(x)= [mm] \bruch{((6x²-6)*(x²+1)³)-(6x*(x²+1)²*(2x^3-6x))}{(x^2+1)^6} [/mm] $

$f'(x)= [mm] \bruch{((6x²-6)*(x²+1))-(6x*(2x^3-6x))}{(x^2+1)^4} [/mm] $

$f'(x)= [mm] \bruch{(6x^4+6x²-6x²-6)-(12x^4-36x^2)}{(x^2+1)^4} [/mm] $

$f'(x)= [mm] \bruch{-6x^4+36x^2-6)}{(x^2+1)^4} [/mm] $

$f'(x)= [mm] \bruch{-6(x^4-6x^2+1)}{(x^2+1)^4} [/mm] $


Schöne Grüße miniscout [sunny]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]