www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Ableitung
Ableitung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:46 Mo 23.01.2006
Autor: Janyary

Aufgabe
Ableitung der Funktion bilden und jeweiligen gueltigkeitsbereich angeben.

a) [mm] f(x)=arctan\bruch{x+1}{x-1} [/mm]

b) [mm] f(x)=x^{a^{x}} [/mm]

bei der b hab ich zuerst an kettenregel oder so gedacht, weiss aber trotzdem nicht, wie ich es so richtig anfangen soll und bei der a hab ich wirklich ueberhaupt keine idee.
hoffe ihr koennt mir helfen.

lg, Jany :)

        
Bezug
Ableitung: Hinweise
Status: (Antwort) fertig Status 
Datum: 10:32 Mo 23.01.2006
Autor: Roadrunner

Hallo Jany!


Die Idee mit der MBKettenregel bei der ersten Aufgabe ist sehr gut:

[mm] $\left[ \ \arctan\left(\bruch{x+1}{x-1}\right) \ \right]' [/mm] \ = \ [mm] \bruch{1}{1+\left(\bruch{x+1}{x-1}\right)^2}*\blue{\left(\bruch{x+1}{x-1}\right)'} [/mm] \ = \ ...$


Die innere Ableitung (blauer Term) musst Du nun mit der MBQuotientenregel ermitteln ...



> b) [mm]f(x)=x^{a^{x}}[/mm]

Hier zunächst umformen:

[mm] $x^{a^x} [/mm] \ = \ [mm] \left[ \ e^{\ln(x)} \ \right]^{a^x} [/mm] \ = \ [mm] e^{a^x*\ln(x)}$ [/mm]


Nun wieder die MBKettenregel in Verbindung mit der MBProduktregel für die innere Ableitung.

Zudem gilt: [mm] $a^x [/mm] \ = \ [mm] e^{x*\ln(a)}$ [/mm]


Gruß vom
Roadrunner


Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Mo 23.01.2006
Autor: Janyary

also zur a)

die ableitung des blauen terms ist   [mm] \bruch{2x}{(x-1)^{2}} [/mm]

wenn ich das mit  [mm] \bruch{1}{1+(\bruch{x+1}{x-1})^{2}} [/mm] multipliziere, erhalte ich [mm] \bruch{x}{x^{2}+1} [/mm]
ist das so richtig fuer die ableitung?

zur b)

also hab mir [mm] f(x)=x^{a^{x}} [/mm] umgeformt in [mm] f(x)=e^{a^{x}*lnx} [/mm]

hab nun zuerst die ableitung von [mm] a^{x}*lnx [/mm] gebildet, das ist [mm] a^{x}*(lna*lnx+ \bruch{1}{x}) [/mm]

die ableitung meiner umgeformten f(x) muesste also
[mm] a^{x}*(lna*lnx+ \bruch{1}{x})*e^{a^{x}*lnx} [/mm] sein.
ist das so richtig?





Bezug
                        
Bezug
Ableitung: a.) falsch, b.) richtig!
Status: (Antwort) fertig Status 
Datum: 18:05 Mo 23.01.2006
Autor: Roadrunner

Hallo Janyary!


> also zur a)
>  
> die ableitung des blauen terms ist   [mm]\bruch{2x}{(x-1)^{2}}[/mm]

[notok] Da habe ich etwas anderes erhalten: [mm] $\bruch{-2}{(x-1)^2}$ [/mm]

Hast Du bei der MBQuotientenregel im Zähler auch das Minuszeichen beachtet?

  

> wenn ich das mit  [mm]\bruch{1}{1+(\bruch{x+1}{x-1})^{2}}[/mm]
> multipliziere, erhalte ich [mm]\bruch{x}{x^{2}+1}[/mm]
> ist das so richtig fuer die ableitung?

[notok] Logischerweise Folgefehler ...


  

> zur b)

> die ableitung meiner umgeformten f(x) muesste also
> [mm]a^{x}*(lna*lnx+ \bruch{1}{x})*e^{a^{x}*lnx}[/mm] sein.

[ok] Das habe ich auch erhalten ...


Gruß vom
Roadrunner


Bezug
                                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:29 Mo 23.01.2006
Autor: Janyary

oh ja, genau das hab ich *grml*

dann ist das die ableitung:   [mm] \bruch{-1}{x^{2}+1} [/mm] ?

Bezug
                                        
Bezug
Ableitung: Jetzt richtig!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Mo 23.01.2006
Autor: Roadrunner

Hallo Janyary!


So ist es richtig! [ok]


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]