www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitung
Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:37 Sa 18.10.2014
Autor: heiser16

Aufgabe
Leite [mm] f(x)=2/3x^3 [/mm] ab.

Hi,
ich muss [mm] f(x)=2/3x^3 [/mm] ableiten. Ich habe verschiedenes ausprobiert, aber schaffe das trotzdem nicht :(
Ich weiß, dass man bei [mm] f(x)=1/x^2 [/mm] als Ableitung [mm] f'(x)=-1/x^2 [/mm] raus bekommt. Kann das aber nicht auf meine Funktion übertragen!

Vielen Dank im voraus


        
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:43 Sa 18.10.2014
Autor: heiser16

Ok, schon gut, ich habe gerade meinen dummen Fehler entdeckt

Bezug
                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Sa 18.10.2014
Autor: Marcel

Hi,

> Ok, schon gut, ich habe gerade meinen dummen Fehler
> entdeckt

jo, kannst aber gerne auch Deine Erkenntnis mitteilen, falls Du sicher
gehen willst, dass das korrekt ist.

Gruß,
  Marcel

Bezug
        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Sa 18.10.2014
Autor: Marcel

Hallo,

> Leite [mm]f(x)=2/3x^3[/mm] ab.

wie ist das zu lesen?

    [mm] $f(x)=2/(3x^3)$, [/mm] also [mm] $=\frac{2}{3x^3}$ [/mm]

oder

    [mm] $f(x)=2/3x^3=(2/3)x^3,$ [/mm] also [mm] $=\frac{2}{3}x^3$? [/mm]

>  Hi,
>  ich muss [mm]f(x)=2/3x^3[/mm] ableiten. Ich habe verschiedenes
> ausprobiert, aber schaffe das trotzdem nicht :(
>  Ich weiß, dass man bei [mm]f(x)=1/x^2[/mm] als Ableitung
> [mm]f'(x)=-1/x^2[/mm] raus bekommt.

[haee] Es wäre

    [mm] $f(x)=1/x=\frac{1}{x}$ $\Rightarrow$ $f\,'(x)=-1/x^2=\,-\,\frac{1}{x^2}$ [/mm]

> Kann das aber nicht auf meine
> Funktion übertragen!

Na, auf jeden Fall wirst Du *grob* sowas wie (die Regeln im Detail kannst
Du sicher nachschlagen)

    [mm] $f(x)=x^n$ $\Rightarrow$ $f\,'(x)=n*x^{n-1}$, [/mm]

    $g(x)=c*f(x)$ [mm] $\Rightarrow$ $g\,'(x)=c*f\,'(x)$ ($c\,$ [/mm] von [mm] $x\,$ [/mm] unabhängige Konstante!)

und auch Rechenregeln für Potenzen gebrauchen können.

Eine Kontrolle machen wir gerne, aber dazu schreibe erst mal die
konkrete Aufgabe nochmal hin (siehe auch https://matheraum.de/mm).
Nachfragen sind sowohl erlaubt als auch erwünscht!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]