www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Ableiten als lineare Abbildung
Ableiten als lineare Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten als lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Mo 01.12.2014
Autor: BBG811

Aufgabe
Es sei [mm] V=R_2[x] [/mm] der R-Vektorraum der Polynome vom Grad [mm] \le [/mm] 2. Bestimmen Sie eine Darstellungsmatrix [mm] [\phi] [/mm] zur linearen Abbildung Φ: [mm] V\to [/mm] V, [mm] p\mapsto \bruch{dp}{dx}, [/mm] bezüglich
a) der festgelegten Basen [mm] B_1=B_2={1,x,x^2} \subset [/mm] V
b) der festgelegten Basen [mm] B_1=B_2={(x-1)^2,x^2,(x+1)^2} \subset [/mm] V


Meine Frage wäre jetzt, ob meine Darstellungsmatrix bei a)
[mm] \pmat{ 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 &0 } [/mm] so stimmt?
Und bei der b) weiß ich nach diesen Schritt nicht mehr weiter
[mm] \phi((x-1)^2)=2x-2=2(x-1) [/mm]
[mm] \phi(x^2)=2x [/mm]
[mm] \phi((x+1)^2)=2x+2=2(x+1) [/mm]
Ich freue mich über jede Hilfe ;)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableiten als lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Mo 01.12.2014
Autor: Marcel

Hallo,

nur kurz zur ersten Aufgabe:

> Es sei [mm]V=R_2[x][/mm] der R-Vektorraum der Polynome vom Grad [mm]\le[/mm]
> 2. Bestimmen Sie eine Darstellungsmatrix [mm][\phi][/mm] zur
> linearen Abbildung Φ: [mm]V\to[/mm] V, [mm]p\mapsto \bruch{dp}{dx},[/mm]
> bezüglich
> a) der festgelegten Basen [mm]B_1=B_2={1,x,x^2} \subset[/mm] V
>  b) der festgelegten Basen [mm]B_1=B_2={(x-1)^2,x^2,(x+1)^2} \subset[/mm]
> V
>  
> Meine Frage wäre jetzt, ob meine Darstellungsmatrix bei a)
> [mm]\pmat{ 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 &0 }[/mm] so stimmt?

testen wir es doch: [mm] $(1,0,0)^T$ [/mm] entspricht $f(x) [mm] \equiv 1\,,$ $(0,1,0)^T$ [/mm] entspricht $f(x) [mm] \equiv [/mm] x$ und
[mm] $(0,0,1)^T$ [/mm] entspricht [mm] $f(x)\equiv x^2\,;$ [/mm] sowohl im Definitions- als auch im Zielbereich.

Es gilt

    [mm] $\pmat{ 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 &0 }*\vektor{1\\0\\0}=\vektor{0\\0\\0}\,,$ [/mm]

das passt zu $1' [mm] \equiv 0\,.$ [/mm]

Weiter gilt

    [mm] $\pmat{ 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 &0 }*\vektor{0\\1\\0}=\vektor{1\\0\\0}\,,$ [/mm]

das passt zu $x' [mm] \equiv 1\,.$ [/mm]

Ferner ist

    [mm] $\pmat{ 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 &0 }*\vektor{0\\0\\1}=\vektor{0\\2\\0}=2*\vektor{0\\1\\0}\,,$ [/mm]

das passt zu [mm] $(x^2)' \equiv 2x\,.$ [/mm]

Die Matrix macht bei den Basiselementen von [mm] $\IR_2[x]$ [/mm] (bei dieser Basis) also
das richtige, also passt sie auch schon insgesamt. Erwähnenswert wäre
vielleicht aber noch, dass Du da in der Tat auch eine Basis des [mm] $\IR_2[x]$ [/mm]
überhaupt hast, und eine Begründung, dass [mm] $\phi$ [/mm] auch linear ist. Sofern das
nicht eh schon in der Vorlesung bzw. Übung behandelt worden ist!

Gruß,
  Marcel

Bezug
        
Bezug
Ableiten als lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Mo 01.12.2014
Autor: angela.h.b.


> Es sei [mm]V=R_2[x][/mm] der R-Vektorraum der Polynome vom Grad [mm]\le[/mm]
> 2. Bestimmen Sie eine Darstellungsmatrix [mm][\phi][/mm] zur
> linearen Abbildung Φ: [mm]V\to[/mm] V, [mm]p\mapsto \bruch{dp}{dx},[/mm]
> bezüglich


> b) der festgelegten Basen [mm]B_1=B_2={(x-1)^2,x^2,(x+1)^2} \subset[/mm]
> V

Hallo,

[willkommenmr].

> Und bei der b) weiß ich nach diesen Schritt nicht mehr
> weiter
> [mm]\phi((x-1)^2)=2x-2=2(x-1)[/mm]

Du mußt nun [mm] \phi((x-1)^2) [/mm] als Linearkombination von [mm] (x-1)^2,x^2,(x+1)^2 [/mm] schreiben:

[mm] \phi((x-1)^2)=2x-2=a*(x-1)^2+b*x^2+c*(x+1)^2=\vektor{a\\b\\c}_{(B_2)}. [/mm]

Damit hast Du die erste Spalte der gesuchten Matrix,
die anderen dann entsprechend.

LG Angela


> [mm]\phi(x^2)=2x[/mm]
> [mm]\phi((x+1)^2)=2x+2=2(x+1)[/mm]


Bezug
                
Bezug
Ableiten als lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Di 02.12.2014
Autor: BBG811

Erstmal vielen Dank für die Antworten.

> > Es sei [mm]V=R_2[x][/mm] der R-Vektorraum der Polynome vom Grad [mm]\le[/mm]
>  > 2. Bestimmen Sie eine Darstellungsmatrix [mm][\phi][/mm] zur

>  > linearen Abbildung Φ: [mm]V\to[/mm] V, [mm]p\mapsto \bruch{dp}{dx},[/mm]

>  
> > bezüglich
>  
>
> > b) der festgelegten Basen [mm]B_1=B_2={(x-1)^2,x^2,(x+1)^2} \subset[/mm]
>  
> > V
>  
> Hallo,
>  
> [willkommenmr].
>  
> > Und bei der b) weiß ich nach diesen Schritt nicht mehr
>  > weiter

>  > [mm]\phi((x-1)^2)=2x-2=2(x-1)[/mm]

>  
> Du mußt nun [mm]\phi((x-1)^2)[/mm] als Linearkombination von
> [mm](x-1)^2,x^2,(x+1)^2[/mm] schreiben:
>  
> [mm]\phi((x-1)^2)=2x-2=a*(x-1)^2+b*x^2+c*(x+1)^2=\vektor{a\\b\\c}_{(B_2)}.[/mm]
>  
> Damit hast Du die erste Spalte der gesuchten Matrix,
>  die anderen dann entsprechend.
>  
> LG Angela
>  
>

Muss ich jetzt die Werte für a,b und c noch irgendwie ausrechnen? Und wenn ja muss ich die mir dann geschickt überlegen oder gibt es da einen einfachen Rechenweg? Ich komm da gerade nicht drauf.

Bezug
                        
Bezug
Ableiten als lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:26 Di 02.12.2014
Autor: angela.h.b.


> Erstmal vielen Dank für die Antworten.

>

> > > Es sei [mm]V=R_2[x][/mm] der R-Vektorraum der Polynome vom Grad [mm]\le[/mm]
> > > 2. Bestimmen Sie eine Darstellungsmatrix [mm][\phi][/mm] zur
> > > linearen Abbildung Φ: [mm]V\to[/mm] V, [mm]p\mapsto \bruch{dp}{dx},[/mm]

>

> >
> > > bezüglich
> >
> >
> > > b) der festgelegten Basen [mm]B_1=B_2={(x-1)^2,x^2,(x+1)^2} \subset[/mm]

>

> >
> > > V
> >
> > Hallo,
> >
> > [willkommenmr].
> >
> > > Und bei der b) weiß ich nach diesen Schritt nicht mehr
> > > weiter
> > > [mm]\phi((x-1)^2)=2x-2=2(x-1)[/mm]
> >
> > Du mußt nun [mm]\phi((x-1)^2)[/mm] als Linearkombination von
> > [mm](x-1)^2,x^2,(x+1)^2[/mm] schreiben:
> >
> >
> [mm]\phi((x-1)^2)=2x-2=a*(x-1)^2+b*x^2+c*(x+1)^2=\vektor{a\\b\\c}_{(B_2)}.[/mm]
> >
> > Damit hast Du die erste Spalte der gesuchten Matrix,
> > die anderen dann entsprechend.
> >
> > LG Angela
> >
> >

>

> Muss ich jetzt die Werte für a,b und c noch irgendwie
> ausrechnen?

Hallo,

ja, natürlich.


> Und wenn ja muss ich die mir dann geschickt
> überlegen oder gibt es da einen einfachen Rechenweg?

Du hast
[mm] 2x-2=a(x-1)^2+bx^2+c(x+1)^2= (a+b+c)x^2+(-2a+2c)x+(a+c). [/mm]

Daraus (Koeffizientenvergleich) bekommst Du ein LGS:

a+b+c=0
-2a+2c=2
a+c=-2.

Das mußt Du lösen.

LG Angela

> Ich
> komm da gerade nicht drauf.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]