www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Ableiten
Ableiten < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:56 So 20.02.2011
Autor: Palme

Aufgabe
gesucht ist die 1. und 2. Ableitung folgender Funktion:
[mm] f(x)=\left( \bruch{x}{x^2-1} \right) [/mm]

Hallo, ich habe ein Problem mit der zweiten Ableiten, kann mir jemand bei der Fehlersuche helfen?

[mm] f(x)'=\left( \bruch{-x^2-1}{(x^2-1)^2} \right) [/mm]

2. Ableitung:
[mm] f(x)'=\left( \bruch{-x^2-1}{(x^2-1)^2} \right)=\left( \bruch{u(x)}{v(x)} \right) [/mm]  daraus folgt [mm] u'(x)=-2;v'(x)=2(x^2-1) [/mm]

f''(x)=[mm]u'(x)*v(x) -u(x)*v'(x)/v(x)^2 [/mm]

Ist v'(x) richtig ?


gruß Palme


        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 So 20.02.2011
Autor: Tyskie84

Hallo,

> gesucht ist die 1. und 2. Ableitung folgender Funktion:
>  [mm]f(x)=\left( \bruch{x}{x^2-1} \right)[/mm]
>  Hallo, ich habe ein
> Problem mit der zweiten Ableiten, kann mir jemand bei der
> Fehlersuche helfen?
>
> [mm]f(x)'=\left( \bruch{-x^2-1}{(x^2-1)^2} \right)[/mm]
>  

[ok]

> 2. Ableitung:
>  [mm]f(x)'=\left( \bruch{-x^2-1}{(x^2-1)^2} \right)=\left( \bruch{u(x)}{v(x)} \right)[/mm]
>  daraus folgt [mm]u'(x)=-2;v'(x)=2(x^2-1)[/mm]
>  

[notok]

> f''(x)=[mm]u'(x)*v(x) -u(x)*v'(x)/v(x)^2[/mm]
>  
> Ist v'(x) richtig ?

>

Nein! u'(x) auch nicht! v'(x) berechnest du mit der Kettenregel mit [mm] x^2-1 [/mm] als innere Funktion. Oder du multpilizierst eben aus aber so schwer ist das nicht. Bei u(x) nochmal scharf hingucken ;-)


>
> gruß Palme
>  


Bezug
                
Bezug
Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 So 20.02.2011
Autor: Palme


> Hallo,
>  
> > gesucht ist die 1. und 2. Ableitung folgender Funktion:
>  >  [mm]f(x)=\left( \bruch{x}{x^2-1} \right)[/mm]
>  >  Hallo, ich
> habe ein
> > Problem mit der zweiten Ableiten, kann mir jemand bei der
> > Fehlersuche helfen?
> >
> > [mm]f(x)'=\left( \bruch{-x^2-1}{(x^2-1)^2} \right)[/mm]
>  >  
>
> [ok]
>  
> > 2. Ableitung:
>  >  [mm]f(x)'=\left( \bruch{-x^2-1}{(x^2-1)^2} \right)=\left( \bruch{u(x)}{v(x)} \right)[/mm]
> >  daraus folgt [mm]u'(x)=-2;v'(x)=2(x^2-1)[/mm]

>  >  

ok, [mm]u'(x)=-2x[/mm]

Ist das hier nicht die Kettenregel? :

[mm] f(x)=(mx+c)^n [/mm]
f'(x)=[mm]m*n (mx+c)^{n-1}[/mm]

>
> [notok]
>  
> > f''(x)=[mm]u'(x)*v(x) -u(x)*v'(x)/v(x)^2[/mm]
>  >  
> > Ist v'(x) richtig ?
> >
>  
> Nein! u'(x) auch nicht! v'(x) berechnest du mit der
> Kettenregel mit [mm]x^2-1[/mm] als innere Funktion. Oder du
> multpilizierst eben aus aber so schwer ist das nicht. Bei
> u(x) nochmal scharf hingucken ;-)
>  
>
> >
> > gruß Palme
>  >  
>  


Bezug
                        
Bezug
Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 So 20.02.2011
Autor: kamaleonti

Hi,
> > > 2. Ableitung:
>  >  >  [mm]f(x)'=\left( \bruch{-x^2-1}{(x^2-1)^2} \right)=\left( \bruch{u(x)}{v(x)} \right)[/mm]
> > >  daraus folgt [mm]u'(x)=-2;v'(x)=2(x^2-1)[/mm]

>  >  >  
> ok, [mm]u'(x)=-2x[/mm]

Ok.

>  
> Ist das hier nicht die Kettenregel? :
>
> [mm]f(x)=(mx+c)^n[/mm]
>  f'(x)=[mm]m*n (mx+c)^{n-1}[/mm]

Stimmt schon. Nur steht bei v(x) ein [mm] x^2 [/mm] in der inneren Funktion. Entsprechend ist die Ableitung anders ;-)

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]