www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Abhängigkeit Polynomnullstelle
Abhängigkeit Polynomnullstelle < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abhängigkeit Polynomnullstelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 So 03.06.2007
Autor: Antiprofi

Aufgabe
Sei F : [mm] \IR^{n+1} [/mm] × [mm] \IR \to \IR [/mm] definiert durch
[mm] F(a_{0}, a_{1}, [/mm] . . . , [mm] a_{n}, [/mm] x) := [mm] a_{n}x^{n} [/mm] + · · · + [mm] a_{1}x [/mm] + [mm] a_{0}. [/mm]
Sei [mm] \overline{a} [/mm] = [mm] (\overline{a}_{0}, \overline{a}_{1}, [/mm] . . . , [mm] \overline{a}_{n}) \in \IR^{n+1} [/mm] und [mm] \overline{x} \in \IR [/mm] eine einfache Nullstelle des Polynoms
[mm] F(\overline{a}, [/mm] ·). Beweisen Sie:
Es gibt eine Umgebung U [mm] \subseteq \IR^{n+1} [/mm] von [mm] \overline{a} [/mm] und eine stetig differenzierbare Funktion
g : U [mm] \to \IR, g(\overline{a}) [/mm] = [mm] \overline{x}, [/mm] so dass F(a, g(a)) = 0 für alle a [mm] \in [/mm] U gilt. ("Satz über die Abhängigkeit der einfachen reellen Nullstellen eines Polynoms von den Koeffizienten").

Hallo!
??? Wie soll das gehen? Ich finde überhaupt keinen Ansatz.
Bitte helft mir! Schon mal im Voraus Danke.

Mfg

        
Bezug
Abhängigkeit Polynomnullstelle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Mo 04.06.2007
Autor: Antiprofi

Hat keiner eine Idee wie man diese Aufgabe löst?

Bezug
        
Bezug
Abhängigkeit Polynomnullstelle: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Mo 04.06.2007
Autor: Hund

Hallo,

es geht hier darum den Satz über implizite Funktionen anzuwenden. Schau am besten mal in eurer Vorlesung nach, wie ihr ihn formuliert habt, dann siehst du sofort, dass es genau um deine Problemstellung, mit der Funktion F(a(quer),.) geht. Das was du dann noch machen musst, ist die im Satz angesprochene Teilmatrix der Funktionalmatrix zu bestimmen und deren Invertierbarkeit zeigen.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]