www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Abgeschlossenheit einer Gruppe
Abgeschlossenheit einer Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abgeschlossenheit einer Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Di 21.10.2008
Autor: Reticella

Aufgabe
Beweise, dass die Gruppe [mm] (\IQ²\backslash(0,0),\cdot) [/mm] mit [mm] ((x_{1},y_{1}),(x_{2},y_{2})) \mapsto (x_{1},y_{1})\cdot(x_{2},y_{2}):=(x_{1}x_{2}+2y_{1}y_{2},x_{1}y_{2}+x_{2}y_{1}) [/mm] abgeschlossen ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich bin da so rangeganngen:

Um zu zeigen, dass [mm] (\IQ²\backslash(0,0),\cdot) [/mm] abgeschlossen ist muss ich zeigen, dass [mm] (x_{1}x_{2}+2y_{1}y_{2},x_{1}y_{2}+x_{2}y_{1}) \in \IQ²\backslash(0,0) \forall (x_{1},y_{1}),(x_{2},y_{2}) \in \IQ²\backslash(0,0). [/mm] Bzw. ich zeige [mm] (x_{1}x_{2}+2y_{1}y_{2}),(x_{1}y_{2}+x_{2}y_{1}) \in \IQ [/mm] und [mm] (x_{1}x_{2}+2y_{1}y_{2}) [/mm] oder [mm] (x_{1}y_{2}+x_{2}y_{1}) [/mm] ist nicht null [mm] \forall (x_{1},y_{1}),(x_{2},y_{2})\in \IQ²\backslash(0,0). [/mm]

Nun versuche ich zu folgern, dass [mm] (x_{1}x_{2}+2y_{1}y_{2})=0\Rightarrow(x_{1}y_{2}+x_{2}y_{1})\not=0 [/mm] und [mm] (x_{1}x_{2}+2y_{1}y_{2})\not=0\Leftarrow(x_{1}y_{2}+x_{2}y_{1})=0, [/mm] komme aber überhaupt nicht weiter.

Kann mir jemand helfen? Ist der Ansatz überhaupt richtig?

Vielen Dank im Vorraus Reticella

        
Bezug
Abgeschlossenheit einer Gruppe: Weg richtig
Status: (Antwort) fertig Status 
Datum: 07:57 Mi 22.10.2008
Autor: statler

Guten Morgen!

> Beweise, dass die Gruppe [mm](\IQ²\backslash(0,0),\cdot)[/mm] mit
> [mm]((x_{1},y_{1}),(x_{2},y_{2})) \mapsto (x_{1},y_{1})\cdot(x_{2},y_{2}):=(x_{1}x_{2}+2y_{1}y_{2},x_{1}y_{2}+x_{2}y_{1})[/mm]
> abgeschlossen ist.

> Ich bin da so rangeganngen:
>  
> Um zu zeigen, dass [mm](\IQ²\backslash(0,0),\cdot)[/mm]
> abgeschlossen ist muss ich zeigen, dass
> [mm](x_{1}x_{2}+2y_{1}y_{2},x_{1}y_{2}+x_{2}y_{1}) \in \IQ²\backslash(0,0) \forall (x_{1},y_{1}),(x_{2},y_{2}) \in \IQ²\backslash(0,0).[/mm]
> Bzw. ich zeige
> [mm](x_{1}x_{2}+2y_{1}y_{2}),(x_{1}y_{2}+x_{2}y_{1}) \in \IQ[/mm]
> und [mm](x_{1}x_{2}+2y_{1}y_{2})[/mm] oder [mm](x_{1}y_{2}+x_{2}y_{1})[/mm]
> ist nicht null [mm]\forall (x_{1},y_{1}),(x_{2},y_{2})\in \IQ²\backslash(0,0).[/mm]
>  
> Nun versuche ich zu folgern, dass
> [mm](x_{1}x_{2}+2y_{1}y_{2})=0\Rightarrow(x_{1}y_{2}+x_{2}y_{1})\not=0[/mm]
> und
> [mm](x_{1}x_{2}+2y_{1}y_{2})\not=0\Leftarrow(x_{1}y_{2}+x_{2}y_{1})=0,[/mm]
> komme aber überhaupt nicht weiter.

Ein Fall reicht: Wenn nämlich [mm] x_1*y_2 [/mm] + [mm] x_2*y_1 \not= [/mm] 0 ist, bist du fertig. Also nimmst du an, es wäre = 0. Dann löst du nach [mm] x_1 [/mm] auf und setzt in die andere Gl. ein. Da [mm] \wurzel{2} [/mm] nicht [mm] \in \IQ [/mm] ist, ergibt sich deine gewünschte Schlußfolgerung.

Hinweis: Du mußt sorgfältig argumentieren, weil du nicht du 0 dividieren darfst.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Abgeschlossenheit einer Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Mi 22.10.2008
Autor: Reticella

Vielen Dank, das habe ich verstanden und hinbekommen.

Jetzt fehlt mir allerdings noch das linksinverse Element.

Kann mir jemand helfen?

Viele Grüße Reticella


Bezug
                        
Bezug
Abgeschlossenheit einer Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Mi 22.10.2008
Autor: Christian

Hallo!

Wie sieht denn dein neutrales Element aus? Bei oberflächlichem Hinschauen sah es für mich so aus, als müßte das das Element (1,0) sein.
Damit hättest Du dann die Gleichung
[mm] $(1,0)=(x_{1}x_{2}+2y_{1}y_{2},x_{1}y_{2}+x_{2}y_{1}) [/mm] $,
sprich, die Gleichungen
[mm] $x_{1}x_{2}+2y_{1}y_{2}=1$ [/mm] und
[mm] $x_{1}y_{2}+x_{2}y_{1}=0$ [/mm]
nach [mm] $x_1$ [/mm] und [mm] $y_1$ [/mm] aufzulösen.

Grüße,
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]