Abgebraisch, körpererweiterung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:34 Sa 23.10.2010 | Autor: | teddy22 |
Aufgabe | a) Sei L [mm] \ge [/mm] K. Zu zeigen ist, dass wenn a, b [mm] \in [/mm] L algebraisch sind, dies auch auf a+b, a-b, ab, a/b wobei [mm] b\neq [/mm] 0 ist, zutrifft.
b) zu zeigen ist, dass [mm] \IQ (\wurzel{2},\wurzel{3}) [/mm] = [mm] \IQ (\wurzel{2} [/mm] + [mm] \wurzel{3}). [/mm] Desweiteren soll der Grad der Erweiterung bestimmt werden. |
Hallo!
Ich arbeite gerade an einem Übungszettel und bekomme die obigen Aufgaben nicht wirklich hin. Bei b) hab ich im Internet ein vorgehen gefunden wie man den Grad bestimmen kann. Dadurch habe ich das minimalpolynom [mm] x^4 [/mm] - [mm] 10x^2 [/mm] + 1 erhalten, was natürlich den Grad 4 hat.
Grundlage hierfür ist, dass [mm] \wurzel{2} [/mm] und [mm] \wurzel{3} [/mm] jeweil ein minimalpolynom vom grad 2 haben. da 2*2 = 4 (gemäß dieses algorithmus) habe ich alle exponenten von 0 bis 4 von [mm] (\wurzel{2} [/mm] + [mm] \wurzel{3}) [/mm] bestimmt, in ein Gleichungssystem übergeführt und gelöst.
meine Frage ist nun, wie ich die Gleichheit von [mm] \IQ (\wurzel{2},\wurzel{3}) [/mm] = [mm] \IQ (\wurzel{2} [/mm] + [mm] \wurzel{3}) [/mm] zeigen kann. Habe in meinem Skriptum keinen offensichtlichen Hinweis gefunden.
ad a)
Die Definition von algebraisch ist, wenn k \ in K nullstelle eines polynoms p [mm] \in [/mm] L[x], p [mm] \neq [/mm] 0 ist.
gut, also ein Polynom aus K ist Nullstelle eines Polynoms in L.
jetzt sollen also a+b, a-b, ab und a/b auch nullstellen sein, wobei a, b [mm] \in [/mm] L. und hier kommt schon ein problem für mich. die definition spricht von algebraisch, wenn zb a,b [mm] \in [/mm] K und diese nullstellen von polynomen aus L sind.
nichts desto trotz ist meine frage, wie ich hier vorgehen muss, um diese eigenschaft nachzuweisen
Meine Idee wäre ja
p(a+b) = p(a) + p(b) = 0 + 0 und somit wieder nullstelle
p(a*b) = p(a)*p(b) = 0 * 0 = 0
aber bei
p(a/b) = p(a) / p(b) ist ne division durch 0
bitte nicht zu kritisch sein, dabei handelt es sich um meine erste idee, aber ich bin mir nicht sicher ob ich hier die linearität reinbringen darf
vielen dank für eure vorschläge!
lg
teddy22
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:58 Sa 23.10.2010 | Autor: | moudi |
Hallo teddy
Benutze bei a), dass in einer endlichen Koerpererweiterung alle Elemente algebraisch sind. Die Zahlen $a+b, a-b, a:b, [mm] a\cdot [/mm] b$ sind alle im Koerper $L(a, [mm] b)\subset [/mm] K$ enthalten.
mfG Moudi
|
|
|
|