www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Abbildungsmatrix aufstellen
Abbildungsmatrix aufstellen < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrix aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Di 15.01.2013
Autor: Benja91

Guten Abend,

ich habe diese Frage in keinem anderen Forum gestellt.

Es geht darum, dass ich eine Basis erstellen sollte, mit der man alle 2x2 Matrixen erreicht, bei denen Spur(A)=0. Diese Menge nennen wir dann sI Dabei bin ich auf folgende Lösung gekommen (steht auch in der Musterlösung).

B={ [mm] \pmat{ 1 & 0 \\ 0 & -1 } [/mm] , [mm] \pmat{ 0 & 1 \\ 0 & 0 } [/mm] , [mm] \pmat{ 0 & 0 \\ 1 & 0 } [/mm] }
Nun soll ich die Matrix für die lineare Abbildung
f:sI --> sI: A-->AP-PA   , mit P [mm] =\pmat{ 3 & -2 \\ 1 & 2 } [/mm]

Nun soll ich die Abbildungsmatrix bezüglich der Basis B aufstellen. Dazu müsste ich ja die Bilder der Basisvektoren berechnen. Dann bekommt man doch aber immer 2x2 Matrixen, oder? Deshalb komme ich auch nicht auf die Lösung. Dort steht nämlich:
[mm] \pmat{ 0 & 1 & 2 \\ -4 & -1 & 0 \\ -2 & 0 & 1 } [/mm]

Es wäre klasse, wenn mir jemand erklären könnte wie man darauf kommt. Vielen Dank und noch einen schönen Abend :)

Gruß
Benja

        
Bezug
Abbildungsmatrix aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Di 15.01.2013
Autor: phychem

Hallo


Dass die Bilder dieser Basisvektoren (2x2-Matrizen) unter dem Endomorphismus f wieder 2x2-Matrizen sind, stimmt schon, aber die Abbildungsmatrix von f bezüglich der Basis B muss eine 3x3 Matrix sein.
Vielleicht solltest du dir den Begriff der Abbildungsmatrix nochmals etwas genauer anschauen:
Die i-te Spalte gibt quasi das Bild des i-ten Mitglieds von B an. Und zwar wie folgt:

Ist [mm] b_{i} [/mm] das i-te Mitglied von B und [mm] M=(m_{i,j}) [/mm] die Abbildungsmatrix von f bzgl. der Basis B, dann gilt:

[mm] f(b_{i}) [/mm] = [mm] m_{1,i}b_{1}+m_{2,i}b_{2}+m_{3,i}b_{3} [/mm]

Die Einträge in der i-ten Spalten von M entsprechen also den Koeffizienten in der Darstellung von [mm] f(b_{i}) [/mm] als Linearkombination der Basisvektoren [mm] b_{1}, b_{2} [/mm] und [mm] b_{3}. [/mm]


Die Bilder der einzelnen Basisvektoren unter f zu berechnen, reicht also noch nicht aus. Du musst noch bestimmen, wie sich diese als Linearkombination der Mitglieder von B schreiben lassen. Mit den Koeffizienten erhälst du dann gerade die Einträgen der gesuchten Abbildungsmatrix.

Bezug
                
Bezug
Abbildungsmatrix aufstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:48 Mi 16.01.2013
Autor: Benja91

Vielen Dank für die Erklärung. Stimmt, das habe ich vollkommen vergessen. Sonst arbeiten wir nämlich meistens mit der kanonischen Basis...

Gruß
Benja

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]