www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Abbildungsmatrix
Abbildungsmatrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 Mo 08.12.2008
Autor: Calcio

Aufgabe
P2 sei der ( /IR)-Vektorraum der Polynome bis zum 2. Grad.
Es wurde bereits gezeigt, dass 1, x und x² eine Basis von P2 bilden und dass die Abbildung [mm] \bruch{d}{dx} [/mm] linear ist.
Wie lautet die zugehörige Abbildungsmatrix von B nach B [mm] \bruch{d}{dx} [/mm] mit B={1,x,x²}?

Hallo,

ich hänge an dieser Aufgabe. Ich weiß, dass [mm] \bruch{d}{dx} [/mm] einem Polynom seine Ableitung zuordnet, aber ich weiß nicht, wie ich sowas in einer Abbildungsmatrix darstelle. Wäre nett wenn ihr mir helfen könntet :)

        
Bezug
Abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Mo 08.12.2008
Autor: angela.h.b.


> P2 sei der ( /IR)-Vektorraum der Polynome bis zum 2. Grad.
> Es wurde bereits gezeigt, dass 1, x und x² eine Basis von
> P2 bilden und dass die Abbildung [mm]\bruch{d}{dx}[/mm] linear ist.
> Wie lautet die zugehörige Abbildungsmatrix von B nach B
> [mm]\bruch{d}{dx}[/mm] mit B={1,x,x²}?
>  Hallo,
>  
> ich hänge an dieser Aufgabe. Ich weiß, dass [mm]\bruch{d}{dx}[/mm]
> einem Polynom seine Ableitung zuordnet, aber ich weiß
> nicht, wie ich sowas in einer Abbildungsmatrix darstelle.
> Wäre nett wenn ihr mir helfen könntet :)

Hallo,

in den Spalten der Abbildungsmatrix müssen die Bilder der Basisvektoren von B in Koordinaten bzgl. B stehen.

Ich mache Die das mal für die 3.Spalte vor.

Der dritte Basisvektor ist [mm] x^2 [/mm] und es ist

[mm] \bruch{d}{dx}x^2=2x= 0*1+2*x+0*x^2=\vektor{0\\2\\0}_{(B)}. [/mm] Dieser Vektor käme also in die dritte Spalte.

Gruß v. Angela



Bezug
                
Bezug
Abbildungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Mo 08.12.2008
Autor: Calcio

Ist die Abbildungsmatrix dann

[mm] \pmat{0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 } [/mm] ?

Bezug
                        
Bezug
Abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Mo 08.12.2008
Autor: angela.h.b.


> Ist die Abbildungsmatrix dann
>  
> [mm]\pmat{0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 }[/mm] ?

Hallo,

ja. Kein Hexenwerk, nicht wahr?

Gruß v. Angela


Bezug
                                
Bezug
Abbildungsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:36 Mo 08.12.2008
Autor: Calcio

Ja, wenn man weiß wie es geht, ist es einfach.

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]