www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Abbildungsaufgebe 1
Abbildungsaufgebe 1 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsaufgebe 1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:19 So 10.10.2004
Autor: ossywest

Hallo zusammen,

ich habe ein Aufgaben, mit der ich nicht richtig zurecht komme. Vielleicht könnt ihr mir ja helfen.

Für die Abbildung verwende ich f da ich nicht genau weiß wie ich dieses Sonderzeichen schreiben soll.
Nun aber zu meiner Aufgabe.

Untersuche mit Begründung, ob die folgende Abbildung injektiv, subjektiv bzw. bijektiv ist.

f : [mm] \IZ [/mm] x [mm] \IN \mapsto \IQ [/mm] , (m,n)  [mm] \mapsto [/mm] f ((m,n)) :=  [mm] \bruch{m}{n} [/mm]

könnt ihr mir auch eine kurze Erklärung schreiben, wie ihr auf das Ergebnis gekommen seit?

MfG

ossywest!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abbildungsaufgebe 1: Antwort
Status: (Antwort) fertig Status 
Datum: 11:56 So 10.10.2004
Autor: Carolin

Hallo nochmal,

da du ja jetzt weißt, was injektiv und surjektiv bedeutet (und  f ist bijektiv, wenn  f inj und surj.),
kannst du dir ja leicht überlegen, ob f hier inj. bzw. surjektiv ist. :-)

Kleiner Hinweis:

f( - 4, 2) = -2
f( -8, 4) = -2
Was folgt daraus?

Viel Erfolg,
Caro

PS: Wenn ich es genauer erklären soll, kannst du dich ja melden!

Bezug
                
Bezug
Abbildungsaufgebe 1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Mi 13.10.2004
Autor: ossywest

Kann es eine Bijektive sein? Da ich ja  auch f (4,2) = 2 einsetzten kann. Da  [mm] \IZ [/mm] positiv oder negativ sein können. Oder sollte mir dein kleinens Beispiel zueigen, das es eine surjektive sein soll? Kann brauche ich aber eine kleine Erklärung.

MfG

ossywest!

Bezug
                        
Bezug
Abbildungsaufgebe 1: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Mi 13.10.2004
Autor: Wessel

Hallo Sven,

das Beispiel sollte eher zeigen, dass die Abbildung nicht injektiv ist.

Warum? Injektiv bedeutet: Aus $f(x) = f(y)$ folgt $x=y$. In Worten: Kein Bildpunkt hat zwei Urbilder.

Wenn Du Dir das Beispiel nun noch einmal anguckst und dazu diese Definition, dürfte es klar sein.
Wenn nicht, frage noch einmal nach.

Gruß,

Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]